
Abstract The Mantel test provides a means to test the
association between distance matrices and has been
widely used in ecological and evolutionary studies. Re-
cently, another permutation test based on a Procrustes
statistic (PROTEST) was developed to compare multi-
variate data sets. Our study contrasts the effectiveness, in
terms of power and type I error rates, of the Mantel test
and PROTEST. We illustrate the application of Procrus-
tes superimposition to visually examine the concordance
of observations for each dimension separately and how
to conduct hypothesis testing in which the association
between two data sets is tested while controlling for the
variation related to other sources of data. Our simulation
results show that PROTEST is as powerful or more 
powerful than the Mantel test for detecting matrix asso-
ciation under a variety of possible scenarios. As a result
of the increased power of PROTEST and the ability to
assess the match for individual observations (not avail-
able with the Mantel test), biologists now have an addi-
tional and powerful analytical tool to study ecological
and evolutionary relationships.
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Introduction

The comparison of multivariate data sets and the testing
of their association is a long-standing approach in identi-
fying important processes governing evolutionary and
ecological patterns. For instance, ecomorphologists are
often interested in testing if size and shape variation are
correlated to ecological differences among closely relat-
ed species (e.g., Douglas and Matthews 1992; Losos and

de Queiroz 1997; Van Damme et al. 1998), whereas
comparative biologists are lured by questions of how
much of this correlation is due to common ancestry (e.g.,
Losos 1990; Malhotra et al. 1996). Community ecolo-
gists seek to establish relationships between environmen-
tal characteristics and species distribution (e.g., Jackson
and Harvey 1993; Rodríguez and Lewis 1997; Jenkins
and Buikema 1998). Among systematists a common goal
is to determine whether or not spatial distribution is re-
lated to phenotypic or genetic differentiation among pop-
ulations or species (e.g., Douglas and Endler 1982; 
Douglas et al. 1999). These research programs embrace
rather different questions and types of multivariate data,
but they all involve comparisons between two or more
data sets in order to measure their degree of concor-
dance. If statistically significant, the match between data
sets contributes to evidence about the processes deter-
mining the association.

Due to its simplicity and flexibility, the most common
approach used by biologists for assessing the congruence
between two multivariate data sets is the test for matrix
correlation developed by Mantel (1967; e.g., Douglas
and Endler 1982; Manly 1986; Jackson and Harvey
1989; Oden and Sokal 1992; Rosa et al. 1995; Thorpe 
et al. 1996; Manly 1997; Rodrígues and Lewis 1997;
Douglas et al. 1999; Dutilleul et al. 2000 and references
in). First each multivariate data set is translated into a
pairwise distance matrix that expresses the difference be-
tween each pair of objects (e.g., species, sites, popula-
tions) in a multivariate space. The Mantel approach con-
sists of calculating the correlation between the two dis-
tance matrices; and then a randomization procedure or a
parametric approximation is used to evaluate whether the
observed correlation is different from random (Jackson
and Somers 1989; Manly 1997). The more important
features of the Mantel approach are: (1) the possibility of
using the large number of possible distance measures
available, both in Euclidean and non-Euclidean spaces
(e.g., genetic distances, Bray-Curtis); and (2) any type of
data can be used to construct association matrices (e.g.,
continuous, ordinal or binary data). However, raw data
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sets must always be transformed into distance matrices.
One drawback in performing such transformations is that
interpretations in the space of distances are not necessar-
ily equivalent to the ones taken from the space of the
original data (Dutilleul et al. 2000). Consider the bivari-
ate orthogonal configuration presented in Fig. 1. The
simple Pearson correlation between X and Y gives an
r=0.0. Based on two separate Euclidean distance matri-
ces, one expressing the pairwise distances between the 6
observations on the abscissa values (X) and the other on
the ordinate values (Y), the between-matrix correlation is
r=–0.32. Thus, the correlation between distance matrices
is not necessarily zero for configurations which are 
orthogonal to one another (Heo and Gabriel 1998; 
Dutilleul et al. 2000).

An alternative approach is to assess the overall degree
of association between two or more matrices applying 
a Procrustean superimposition approach (Gower 1971).
Rather than transforming data sets into distance matrices,
the raw data matrices, or their ordination solutions, are
scaled and rotated in order to find an optimal superimpo-
sition that maximizes their fit. The sum of the squared re-
siduals between configurations in their optimal superim-
position can be then used as a metric of association
(Gower 1971). A permutation procedure (PROTEST) im-
plemented by Jackson (1995) can be then used to assess
the statistical significance of the Procrustean fit. The Pro-
crustean superimposition approach provides a number of
additional features, while keeping Mantel’s flexibility
(i.e., choice of distance measure and types of data). A
particular advantage of the Procrustean approach is that
when displaying multivariate data sets in their optimal su-
perimposition, one can visually examine the concordance
of observations for each dimension separately, aiding the
interpretation of data structure. For the Mantel approach,
since each difference between observations for all dimen-
sions is compressed into a single distance, the importance

of each variable (or dimension) cannot be evaluated di-
rectly by a simple scatterplot of one distance matrix
against the other.

Although fairly common in the realm of morphometric
analysis (see Rohlf and Slice 1990; Bookstein 1996 for
reviews), the use of Procrustes methods in the interpreta-
tion of data sets having different characteristics (e.g.,
morphological vs ecological features) is restricted mainly
because the possibilities of application have not been yet
detailed and explored (but see Olden et al. 2001). Fur-
thermore, the permutation procedure (PROTEST) for the
Procrustean fit was only recently developed (Jackson
1995) and its statistical performance was never assessed.
In order to show ecologists and evolutionary researchers
the statistical and analytical advantages of the Procruste-
an superimposition approach, this article aims to: (1)
compare the performance in terms of type I error rates
and power of the Procrustean permutation test proposed
by Jackson (1995) and the Mantel test; and (2) suggest
and illustrate strategies for using Procrustes methods as
an analytical tool to describe and test patterns of associa-
tion among multivariate data sets.

Materials and methods

Mantel and Procrustes statistics

The congruence or correlation between distance matrices (usually
symmetric, but see Mantel 1967) can be calculated as:

where Xij and Yij are the ith and jth off-diagonal elements of sym-
metric matrices (see Douglas and Endler 1982 for a computational
example). The diagonal elements of the matrices are not included
because the probability of rejection is unaffected. Also, the above
equation is computationally simpler but equivalent in terms of
probability to its standardized version based on the Pearson prod-
uct-moment correlation (Manly 1997, p 174).

Procrustes analysis is a procedure that minimizes the sum-
of-squared differences between two or more configurations (i.e.,
data matrices) in a multivariate Euclidean space. There are several
strategies for Procrustes analysis (Rohlf and Slice 1990), but the
simplest approach is the least-squares superimposition of one con-
figuration Y (n rows or observations by k columns or variables) to
a reference configuration X (n×k). To illustrate the basic approach
of a Procrustes analysis, two triangles (X: A-B-C and Y: a-b-c) dif-
fering in location, size (i.e., sum of their distances) and orientation
are presented (Fig. 2a). First, the configurations are re-scaled to a
common size and jointly centered (Fig. 2b), and, if necessary, mir-
ror reflected (Fig. 2c) so that their orientation is coincident. In or-
der to find the optimal superimposition, one configuration is kept
fixed as reference (X: A-B-C), while the other (Y: a-b-c) is rotated
successively until the sum-of-the-squared residuals between corre-
sponding coordinates in both configurations (∆2

12) is minimized
(Fig. 2d). Thus, the greater the concordance between data sets, the
lower the ∆2

12 value. In addition, individual residuals between ho-
mologous observations can be interpreted separately, indicating
their match. Computationally, the Procrustean fit can be achieved
in two steps: (1) centering and scaling:

where I is an (n×n) identity matrix, P is a (n×n) matrix with all 
elements =1/n. Repeat this step for configuration Y leading to Yscl.
Note that the scaling process does not alter the proportional differ-
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Fig. 1 Simple Pearson product moment correlation between X and
Y=0, whereas the correlation between distance matrix X and ma-
trix Y=–0.32. Matrix correlation was based on separate Euclidean
distance matrices, one expressing the pairwise distances between
the six observations based on the abscissa values (X) and the other
on the ordinate values (Y)
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ences in terms of variances among variables so that variables with
high variances originally will have more importance in the overall
fit. On the other hand, if each variable is standardized to mean 0
and variance 1 prior to the scaling process, all variables will have
the same weight in the fit process; and (2) reflection, rotation and
the residual sum-of-squares statistics: ∆2

12=2(1−trace W). W is ob-
tained by the singular value decomposition (X′sclYscl) = VWU′. In
order to make ∆2

12 vary between the range of 0 and 1, the follow-
ing transformation is used: (trace W)2. Since both matrices were
standardized in step 1, m12 is the same regardless of which matrix
is used as the reference matrix. The optimal rotation matrix (i.e.,
that providing the best fit) can be calculated as H=UV′. Note that
∆2

12 can also be calculated by first rotating the matrix Y (i.e.,
Yrot=YsclH) and then finding the sum of the squared distances be-
tween Xscl and Yrot. It is interesting to note that where X and Y have
only one variable each (e.g., Fig. 1), W is equal to the Pearson
correlation index and therefore m12=1–r2. Because the superimpo-
sition process requires that matrices have the same dimensionality,
where this is not the case, the matrix with the smaller number of
variables can be filled with columns of zeros until it matches the
dimensionality of the larger matrix (Krzanowski and Marriot
1994). Another possibility, which we use in this paper, is to reduce
both sets to a common dimensionality by applying an ordination
technique (e.g., principal component analysis) to each data matrix
separately.

Randomization protocol for the Mantel test and PROTEST

In order to evaluate the significance of Z (Mantel test) and m12
(PROTEST), a randomization test was conducted as follows: (1)
calculate the observed statistic of association Zobs and m12-obs; (2)
randomly permute entire rows in relation to each other of one data
matrix; and (3) recalculate the values for the permuted association
Zrnd and m12-rnd; (4) repeat steps 2 and 3 a large number of times.
For the Mantel test, randomly permute rows of one matrix and ap-
ply the same randomized order to the columns (see Manly 1997, p
175 for an example). The same permutation of rows was applied
for both tests because we wanted to compare them also on the ba-
sis of the same permuted sets. Both tests are based on one-tailed
probabilities. In the Mantel test large Zobs indicates greater correla-
tion between data sets and thus the probability is calculated as:

(number of Zrnd equal to or larger than Zobs+1)/(number of random-
izations+1). In contrast, smaller values of m12 indicate higher con-
cordance between data sets and the probability of rejection is 
assessed as (number of m12-rnd equal to or smaller than 
m12-obs+1)/(number of randomizations+1). The 1 in the numerator
and the denominator represents the observed value for the statistic
being evaluated, which is considered as a possible value of the
randomized distribution.

Simulation experiment: type I error rates and power

In this study we follow standard Monte Carlo protocols for esti-
mating probabilities of type I error and power for all methods de-
scribed above (e.g., Manly 1997; Peres-Neto and Marques 2000;
Peres-Neto and Olden 2001). In this case, one simulates popula-
tion correlation matrices and manipulates them in order to intro-
duce a desirable effect size (i.e., a particular correlation between
matrices). Following this, a large number of samples are taken and
the test statistic is calculated each time. If the effect size is manip-
ulated to be zero (i.e., the null hypothesis is true), the probability
of committing a type I error is estimated as the fraction of tests
that erroneously rejected the null hypothesis. If the effect size is
set different from zero, the proportion of cases in which the null
hypothesis was correctly rejected is used as an estimate of statisti-
cal power.

The first step was to design correlation matrices having specif-
ic Pearson correlation structure within and between data sets. Each
matrix contains 12 variables in total where the first 6 variables
were assigned to data matrix X and the last 6 were assigned to data
matrix Y. Two types were considered:

1. Homogeneous matrices have all variables within and between
data matrices uniformly correlated (Table 1 and Fig. 3a). For
example, matrix 8 (Fig. 3a) has all variables within each data
matrix correlated with each other at r=0.4, and all variables be-
tween (i.e., across) data matrices correlated with each other at
r=0.2. 

2. Heterogeneous matrices have two levels of correlations within
and between data matrices (Table 1 and Fig. 3b). In these
cases, the first three variables within each data matrix were
correlated at a specified level within and between matrices
(e.g., r=0.4 for matrix 18, Fig. 3b), whereas the other three
variables were correlated at a different level (r=0.2 for matrix
18, Fig. 3b). Correlations between corresponding blocks of
variables were set at r=0.0 (Fig. 3b).

Generating the samples following designed correlation structures
(Table 1) was achieved by applying a modified procedure used by
Ganeshanandam and Krzanowski (1990) as follows. The steps
consists of: (1) generate 12 random normally distributed variables
N(0, 1) with the appropriate number of observations according to
sample size; (2) decompose the correlation matrix by a Cholesky
decomposition; (3) post-multiply the upper triangular matrix re-
sulting from the matrix decomposition of step 2 by the random
matrix of step 1; (4) separate the matrix in step 3 so that the first 6
variables are designated to data matrix X and the other 6 to data
matrix Y. Note that the resultant data matrices are a sample from a
multivariate normal distribution with the specified correlations as
in Table 1.

Type I error rates were measured using samples from correla-
tion structures with no association between matrices (Table 1, ma-
trices 1–5). All other matrices present some degree of association
between their data matrices and thus are suitable for measuring
power. From each correlation matrix, 1,000 random samples of
size 10, 20 and 30 observations were extracted and the Mantel test
and PROTEST were conducted for each sample matrix using 999
permutations. As mentioned previously, we adopted a paired-test
protocol where both statistics were calculated on the same samples
and the same randomized data set for all correlation matrices.
Each sample matrix had its variables standardized to unit variance
and zero mean prior to the tests. For the Mantel test, pairwise (be-
tween observations) Euclidean distance matrices (Legendre and
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Fig. 2a–d Representation of steps involved in a Procrustes analy-
sis: a original configurations; b configurations after standardiza-
tion (i.e., similar size and common center); c configurations after
mirror reflection, if necessary; d configuration after rotation and
dilation so that the sum of the squared differences between homol-
ogous observations (A/a, B/b, C/c) is a minimum. Triangle ABC
was used as reference configuration



Legendre 1998) were calculated. Principal component analysis
(PCA) was applied to each sample matrix in order to evaluate the
effects of reduction of data dimensionality on both tests. PCA was
conducted on each sample matrix separately, and the scores scaled
relative to their eigenvalues for the two first PCA axes were used
as input data for both tests. For the Procrustes fit the PCA scores
were used as the input data matrix, whereas for the Mantel test Eu-
clidean distance matrices were calculated from the PCA scores.

A significance level of α=0.05 was used throughout and the re-
sults for α=0.01 were similar regarding the differences in perfor-
mance between methods and therefore are not reported. Type I er-
ror rates were estimated as the proportion of sample tests out of
1,000 that rejected the null hypothesis when the null hypothesis is
true (Table 1, matrices 1–5). On the other hand, power was calcu-
lated as the proportion of sample tests that correctly identified true
associations (Table 1, all remaining data sets). To compare esti-
mates, we calculated 95% confidence intervals for both power and
type I error rate estimates (Manly 1997) as:

where p is the proportion of rejections and N is the number of
sample test trials (i.e., 1,000).

Procrustes superimposition as an analytical tool

The Procrustes method is flexible enough that a variety of strate-
gies can be implemented or adapted in order to provide an array of
analytical procedures. We present two examples that are both 
useful and broad enough to serve as a general guide for future ap-
plications. The data sets used to demonstrate the analytical ap-
proaches were chosen such that the raw data was available in the
original publication.

Example 1 – Procrustes superimposition plot

The first procedure relates to a plot of the superimposed data ma-
trices in their optimal fit. We refer to this graphical output as a
Procrustean superimposition plot. This plot provides a template
for multivariate data visualization, where differences between ho-
mologous observations in the two matrices can be displayed for
each dimension (i.e., variable or multivariate axes) separately.
This aids in identifying individual discrepancies and the relative
contribution of each variable to the match.

As an example we used the ecomorphological data of Losos
(1990) to address the question of whether there is an association
between morphology (snout-vent length, mass, foreleg, hindleg,
tail lengths and lamella number) and performance capability
(sprint, jump and cling) of West Indian Anolis lizards. The raw da-
ta for 15 species are presented in Table 1 of Losos (1990). Be-
cause of missing data in the performance measurements, Anolis
occultus was excluded from the analysis. We used PCA to summa-
rize the main patterns of variation of morphological and perfor-
mance data sets. Variables were log-transformed prior to analysis,
and in both cases PCA was performed on a correlation matrix.
Since we wanted morphological components (i.e., size and shape
axes) having the same weight in the Procrustean fit, we scaled the
variance of scores on each axis to be 1. The scores on the first two
components from each data set were used as input matrices for
Procrustes superimposition. Morphology was used as the reference
configuration for the rotational process. After centering and scal-
ing the morphological (Mscl) and performance (Pscl) data sets, the
optimal displacement that minimizes the residual sum-of-squares
of Pscl onto Mscl can be achieved as Prot=Pscl H, where H is the op-
timal rotational matrix between both data sets (see Procrustes sta-
tistics). Displaying Mscl and Prot jointly will generate the Procrus-
tean superimposition plot. In order to relate the species differences
in terms of morphological and performance variables, the eigen-
vectors of the first two morphological and performance compo-
nents, which contain the correlation (i.e., loadings) between vari-
ables and components (i.e., scores), were also analyzed. To pro-
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Fig. 3 Matrix representation of the correlation structure for a ho-
mogeneous correlation matrices with all variables within and be-
tween data sets uniformly correlated (the example represents ma-
trix 8 in Table 1) and b heterogeneous correlation matrices with
two levels of correlations within and between data matrices (the
example represents matrix 18 in Table 1). See text for more details.
The first six variables (1–6) are used to create data matrix X where-
as the last six variables (7–12) are used to compose data matrix Y

Table 1 Between- and within-matrix correlation structure of pop-
ulations used in the simulation study. All populations contain six
variables in each of two data matrices. Homogeneous matrices
present uniform correlations between and within data matrices
(see Fig. 3a for a pictorial example), whereas heterogeneous ma-
trices are divided into blocks of three variables each with non-uni-
form correlations (see Fig. 3b)

Matrix Correlation between Correlation within 
data matrices data matrices

Homogeneous
1 0.0 0.8
2 0.6
3 0.4
4 0.2
5 0.0
6 0.2 0.8
7 0.6
8 0.4
9 0.2

10 0.4 0.8
11 0.6
12 0.4
13 0.6 0.8
14 0.6
15 0.8 0.8

Heterogeneous
16 0.2/0.0 0.2/0.0
17 0.4/0.0 0.4/0.0
18 0.4/0.2 0.4/0.2
19 0.6/0.0 0.6/0.0
20 0.6/0.2 0.6/0.2
21 0.6/0.4 0.6/0.4
22 0.8/0.0 0.8/0.0
23 0.8/0.2 0.8/0.2
24 0.8/0.4 0.8/0.4
25 0.8/0.6 0.8/0.6

p p p N± −( )1 96 1. / ,



vide this contrast, since the performance scores are now rotated,
performance eigenvectors also need to be rotated by matrix H (i.e.,
post multiply the eigenvector matrix by H).

Example 2 – partial PROTEST

The second analytical tool that we suggest is a partial approach
where the variation in the two target matrices related to other
sources of data can be partitioned out and then a PROTEST is per-
formed. We develop this partial PROTEST method as an analo-
gous procedure to a multiple Mantel test or partial Mantel test
(Smouse et al. 1986; Thorpe et al. 1996; Douglas et al. 1999),
which is an extension of the original test for testing the correlation
between two distance matrices where the variation due to one or
more matrices is kept fixed (i.e., partial correlation). This ap-
proach can be essential in the process of testing the hypothesis of
association/causation because it minimizes problems related to
spurious correlation, i.e., that the association between two sets of
data is largely due to their mutual correlation with other sources of
variation rather than to their own.

The partial PROTEST can be best described as a simple exten-
sion of partial linear multiple regression (Legendre and Legendre
1998). For simplicity, consider two data matrices X and Y, where
the variation related to a third data matrix Z will be partitioned
out. In short, partial PROTEST consists of two steps: (1) perform
a separate multiple regression for each variable in X on all vari-
ables in Z and compute the residual, repeating the same process
for each variable in Y against Z; and (2) carry out a PROTEST us-
ing the two matrices of residuals values as input data sets. Note
that the residual matrices have the same dimensionality as the
original data, but the variation related to Z no longer remains. As
an example of the procedure, we use the data of Spielman (1973)
which contrasts matrices of genetic (gene frequencies), anthropo-
morphic (Mahalanobis) and geographic (Euclidean) distances be-
tween 19 Yanomama villages from northern Brazil and southern
Venezuela. We chose this particular study also to show how data
that are only available in the form of distance matrices can be ana-
lyzed using the Procrustes method. In this case, the first step is to
obtain a Euclidean representation in a Cartesian coordinate system
of the distance matrices using principal coordinate analysis
(PCoA; see Legendre and Legendre 1998 for a review). This ordi-
nation method “unfolds” the distance matrix into a coordinate ma-
trix that preserves the relationship between objects. A perfect rep-
resentation is guaranteed only if the original distance measure is
Euclidean and thus when conducting a PCoA on non-Euclidean
distances, negative eigenvalues are produced meaning that some
of the dimensions are not in real space (i.e., imaginary space), and
the relationship among objects are distorted (Gower and Legendre
1986). There are at least three solutions for this problem: (1) cor-
rect for the negative eigenvalues directly in the distance matrix
and recalculate the PCoA as in Legendre and Legendre (1998, 
p 434); (2) if the absolute sum of positive eigenvalues is much
larger than the sum of negative eigenvalues, use only the PCoA 
dimensions that present positive eigenvalues (Krzanowski and
Marriott 1994); or (3) use non-metric multidimensional scaling
(Legendre and Legendre 1998). McArdle and Anderson (2001)
showed that the first two methods inflate the total sum of the
squares in the analysis, which may cause a decrease in the nomi-
nal type I error. They showed that negative eigenvalues are a neg-
ative sum of the squares and should be subtracted from the posi-
tive eigenvalues in order to provide the correct total sum of the
squares. One solution may be to re-scale the multivariate coordi-
nates such that correct total sum of squares is used. However, be-
cause the negative eigenvalues are relatively small for Spielman’s
(1973) genetic distance matrix, which is the only non-Euclidean
matrix in the study, we chose the second solution.

Our intent is to use the data sets of Losos (1990) and Spielman
(1973) as examples of the application of the analytical tools based
on Procrustes methods described here to real situations. Therefore
comparisons with previous results and discussion of the data will
not be performed. Although we demonstrate the flexibility of the

Procrustes superimposition approach using two examples of ana-
lytical strategies, they differ sufficiently to show an avenue of pos-
sibilities, which are summarized in Fig. 4. Three main stages are
identified as follows:

1. Multivariate data sets are represented in the form of raw data,
distance matrices, or both. Where necessary, appropriate trans-
formations should be carried out (e.g., log-transformation).

2. Raw data or ordination solutions for each data set are superim-
posed. Where necessary, conduct corrections for negative ei-
genvalues.

3. A residual data matrix is generated and serves as input for oth-
er analytical tools (e.g., Procrustean superimposition plot, par-
tial PROTEST, cluster analysis, ANOVA). Note that the sum-
of-the-squared residuals also can be used as a measure of over-
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Fig. 4 Diagrammatic summary of possibilities when applying
Procrustes rotations as an analytical tool. Input multivariate data
are represented by either raw or distance matrices, or both. For
simplicity only two data sets are considered. Data sets are super-
imposed and residuals can be used as input to other analytical
tools (see text for more details)



all distance between two multivariate data sets, and therefore
can be used as an input to pairwise distance matrices contrast-
ing several multivariate data sets (e.g., Jackson 1993).

Results

Type I error rates and power

The results for both type I error and power estimates are
presented in terms of the proportion of rejections out of
1,000 sample tests for each correlation matrix. Matrices
1–5 (Table 1) were used to estimate type I error rates.
The number of rejections was usually equal to the nomi-
nal value of 5% for both tests regardless of the sample
size, within-matrix structure and whether either raw data
(Fig. 5a–c) or data summarized by PCA (Fig. 5d–f) were
used. These results indicate suitable efficacy of both
tests in controlling type I errors (i.e., rejecting the null
hypothesis when it is true), and therefore power compar-
isons between both tests are straightforward.

Based on non-zero patterns of correlation (matrices
6–25), PROTEST showed equivalent or greater power
than the Mantel test for detecting association between data
matrices (Fig. 5). For sample size 10, PROTEST and the
Mantel test present comparable power; however as sample
size increases (20 and 30 observations) PROTEST outper-
forms the Mantel test for all correlation matrices with in-
termediate degrees of association. In some cases the dif-

ference in power between the two tests was between 20%
and 30% (e.g., matrices 8 and 9 for sample size 30). For
matrices having high degrees of association, both tests
were extremely powerful (Fig. 5). Using a PCA to sum-
marize within-matrix patterns led to similar or enhanced
power in most situations. The largest differences were
provided by tests based on matrices 8, 9, 17 and 18
(Fig. 5) that present low degrees of association (Table 1).

Procrustes superimposition plot

The two first axes from the PCA of the lizard morpho-
logical data (Losos 1990) accounted for 92% of the total
variation, whereas the PCA on the performance data ac-
counted for 98% of the total variance in the first two ax-
es. Based on these two components, the PROTEST re-
vealed highly significant concordance between data sets
(m12=0.51, P≤0.001). To simplify the interpretation of
the Procrustean superimposition plot, residuals between
configurations after optimal fit are represented by
straight lines connecting each species between data sets
(Fig. 6a). Species such as A. stratulus have small residu-
als indicating a close match between morphology and
performance in contrast to species having larger residu-
als such as A. pulchellus.

In order to specify the components of morphological
and performance variation, we used the morphological
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Fig. 5a–f Type I error and
power, measured as the propor-
tion of rejections (α=0.05) per
1,000 tests, of PROTEST (solid
squares) and Mantel test (open
squares). a Raw data, sample
size n=10; b raw data, n=20;
c raw data, n=30; d PCA data,
n=10; e PCA data, n=20; f PCA
data n=30. Vertical bars indi-
cate confidence intervals for
the estimates



(Fig. 6b) and performance (inset in Fig. 6b) eigenvectors
(i.e., correlations) in the first two principal components.
Because now the performance components are rotated
towards the morphological components, we also rotated
the performance eigenvectors according to the optimal
rotational matrix (inset plot in Fig. 6b) so that one can
identify differences in species performances back in the
original performance space (Fig. 6a). Each variable is
represented by a vector, the length of which is propor-
tional to the correlation of that variable with each mor-
phological or performance PCA axis (Fig. 6b). All mor-
phological variables have positive correlations with their
PC-1, indicating that this component can be interpreted
as a general variable of size, whereas PC-2 may be use-
ful in examining size-scaled variation (i.e., shape). For
instance, A. cuvieri and A. garmani are larger in size
than A. stratulus and A. opalinus; however these latter
species have relatively long forelegs and greater num-
bers of lamella than A. cuvieri and A. garmani (Fig. 6a,
b; see also Losos 1990: Table 1). In terms of perfor-
mance (inset in Fig. 6b), sprinting ability is negatively
correlated with the ability of jumping and pulling (but
see Losos 1990) so that A. garmani and A. gundlachi
tend to jump and pull better than A. stratulus and
A. valencienni which have a better sprinting ability
(Fig. 6a and inset in Fig. 6b).

Once the components of variation within the two sets
are identified, one can also specify which components of
morphological variation provide a better match with per-
formance. At this time, each performance variable was
correlated with the first two morphological components.

Interpreting the correlation between all variables and
the morphological components (Fig. 6b), two patterns can
be recognized: (1) larger species (PC-1) tend to jump and
pull better than smaller ones, which in turn tend to run
faster than larger ones; and (2) shape variation does not
seem to be highly associated to differences in performance
abilities, although some species with relatively longer tails
will tend to run slower (e.g., A. gundlachi). According to
the direction of change of residuals, most of performance
residuals are related to shape differences (PC-2) rather
than size variation (Fig. 6a), indicating that in fact size is
more correlated with performance than shape. In fact,
when partitioning the total m12=0.59 into the size (i.e., 
PC-1 m12=0.02) and shape (i.e., PC-2 m12=0.57) contribu-
tions, the latter presents a considerably larger component
of residual variation. This result corroborates our previ-
ously finding in which size (PC-1) is a better predictor of
performance than shape (PC-2) (Fig. 6b). Specifically, the
largest residuals are associated with A. pulchellus and
A. grahamani, suggesting that their shape provides the
poorest predictions of their performance. Species with rel-
atively long tails have lower sprinting capabilities in gen-
eral (Fig. 6a), but A. pulchellus provides a better sprint
than predicted by its tail whereas A. grahamani exhibits
the opposite relationship, being less efficient in sprinting
than predicted by the relative size of its tail.

Partial PROTEST

The first four positive eigenvalues from the PCoA of
Spielman’s (1973) genetic distance matrix accounted for
74% of the total variation. In order to keep matrices with
same dimensionality, we also retained the four first PCoA
axes for the anthropomorphic (80%) and geographic
(100%) distance matrices. Note that for geographic data
(i.e., straight line distances) the two first axes should ac-
count for 100% of the variation; however when data pres-
ent measurement error, which was the case here, the rep-
resentation spans through more than two axes. To parti-
tion out the variation due to common geographic varia-
tion, partial PROTEST was conducted by regressing each
of the four anthropomorphic and genetic PCoA axes on
the four retained geographic PCoA axes. The test indicat-
ed that there is a significant association between genetic
and anthropomorphic variation after the spatial contribu-
tion is partitioned out (m12=0.65, P≤0.001).

Discussion

Type I error rates and power

Our simulation results revealed that PROTEST is as
powerful or more powerful than the Mantel test in most
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Fig. 6a, b The Procrustean superimposition of Anolis species
based on the two first morphology (reference) and performance
principal components (raw data from Losos 1990). a Procrustes
superimposition plot of morphological (solid squared) and perfor-
mance components (end point of solid lines). Solid lines represent
Procrustes residuals from both configurations. Species codes re-
present the two first letters of their names: A. cristatellus, A. cuvi-
eri, A. evermanni, A. garmani, A. grahami, A. gundlachi, A. krugi,
A. lineatopus, A. opalinus, A. poncensis, A. pulchellus, A. sagrei,
A. stratulus and A. valencienni. b Directions of variation of mor-
phological and performance variables with their first two principal
components. Inset plot shows correlations of performance vari-
ables with their first two principal components



situations. Large differences were achieved by interme-
diate degrees of association, where PROTEST provides
greater power than the Mantel test. We are aware of only
few studies that have attempted to evaluate type I error
and/or power of the Mantel test (Dietz 1983; Manly
1986; Smith 1998). In all these studies, including ours,
the correlation between data sets was manipulated to
generate a gradient from low to high association between
matrices. These studies simulated data where the correla-
tion within data matrices was set to zero (independent
random variables), and the variables were generated hav-
ing either normal (Dietz 1983) or uniform distributions
(Manly 1986). More recently, Smith (1998) generated
data where the within-matrix correlation was varied, but
either set to zero or extremely high at r=0.8. Therefore,
our simulations were more extensive in creating a larger
number of more varied scenarios where the structure
within- and between-matrices was more finely examined
(Table 1) relative to other studies. We also evaluated the
power where multivariate analysis (e.g., PCA) is used as
a prelude to performing the tests, a common procedure
among evolutionary biologists and ecologists when 
using the Mantel test (e.g., Jackson and Harvey 1989;
Douglas and Matthews 1992; Rodrígues and Lewis
1997; Douglas et al. 1999). The results show some bene-
fit in terms of power for both tests when using PCA, es-
pecially for matrices with low degrees of association, in-
dicating that it may be advantageous to reduce data di-
mensionality by applying an ordination prior to testing.

In our comparisons involving the Mantel test, we re-
stricted our evaluations to the measure of Euclidean dis-
tance due to its broad use in evolutionary and ecological
applications, especially in studies related to spatial anal-
ysis (e.g., Jackson and Harvey 1989; Oden and Sokal
1992; Rodrígues and Lewis 1997; Manly 1997). Addi-
tionally, previous studies have tested the power of the
Mantel test using straight Euclidean distance (Dietz
1983; Manly 1986; Smith 1998). However, different dis-
tance measures and types of data might provide different
results for the Mantel test (Jackson 1995). Recently, 
Duttilleul et al. (2000) showed that the squared Euclide-
an distance provided a better association between data
sets than simple Euclidean distances. Based on their
findings we recalculated our power estimates for the
Mantel test using squared Euclidean distances as the as-
sociation metric for generating pairwise distance matri-
ces. Using the raw data matrices and sample size of 30
observations for our correlation matrices, we found an
increase in power compared to our original estimates for
the Mantel test, but the squared measure had always
equivalent or significantly lower power when compared
to PROTEST. The impact of other choices of distances
on the power of the Mantel test may be an avenue for fu-
ture investigation.

We suggest that PROTEST has greater power because
it measures association using the raw observations, or
their ordination solutions, whereas the Mantel test mea-
sures association between distance matrices. Dutilleul 
et al. (2000) showed that the conclusions based on one

approach are not necessarily consistent with the other.
They explored some bivariate examples where the Pear-
son correlation was zero, but the standardized Mantel
statistic was either negative or positive (e.g., Fig. 1). Be-
cause m12=1–r2, the significance of the Procrustes statis-
tics and the Pearson correlation will always match. In
addition, Dutilleul et al. (2000) simulated samples fol-
lowing different bivariate correlation levels to show that
the Mantel test has lower power when compared to a
parametric and a randomization test based on the Pear-
son correlation. Due to the inconsistencies found be-
tween the Mantel and Pearson statistics, Dutilleul et al.
(2000) concluded that interpretations based on a space of
distances may not always be validly applied back to the
space of the original data, which has been the general 
avenue when interpreting results based on the Mantel
statistics. However, it is often the case that one is inter-
ested in choosing a particular distance measure which
may emphasize, or diminish, particular attributes that are
considered to be important or unimportant. For example,
inverse-distance matrices emphasize local-scale relation-
ships between data matrices, while down-weighting
large-scale relationships. In these cases, the representa-
tion among objects given by principal coordinate analy-
sis, prior to Procrustes analysis, also reflects the proper-
ties of any particular distance measure selected.

Procrustes superimposition as an analytical tool

In addition to the statistical performance of PROTEST
over the Mantel test, another advantage in applying Pro-
crustes analysis is the graphical solution provided (i.e.,
Procrustean superimposition plot) because the patterns of
concordance between data sets can be displayed and in-
dividual observations assessed separately (Fig. 6a and
also see Jackson 1995). For instance, we showed that the
association between morphology and performance
among West Indian Anolis lizards (Losos 1990) is large-
ly due to their size rather than shape differences, imply-
ing that the evolution in performance may have been ac-
quired through changes in size rather than allometric
variation. In addition to visual inspection, these Procrus-
tes residuals can be used to analyze other important
sources of variation that may be important in explaining
the evolution of morphology and performance. For ex-
ample, the larger residuals encountered could be related
to behavioral and ecological differences that these spe-
cies (i.e., A. pulchellus and A. grahamani, Fig. 6) have
compared to species that show smaller residuals between
morphology and performance.

In addition, Procrustes residuals can be also related to
other sources of information, becoming useful in many
designs of post hoc analysis such as regression or analy-
sis of variance, cluster analysis, ordinations, and even
additional Procrustes analysis (e.g., Klingenberg and
McIntyre 1998). These designs provide further tools
when searching for additional factors in defining the as-
sociation between evolutionary data sets (e.g., Smith 

176



et al. 1997; Monteiro 1999). In these cases, Procrustes
residuals should be considered as analogous to geometric
regression residuals (model II regression; Sokal and
Rohlf 1995) where both data sets are subjected to similar
measurement errors. To avoid this condition we used
multiple regressions (model I regression) to factor out
the effect of geographic position when conducting the
partial PROTEST on the anthropomorphic and genetic
data sets of Spielman (1973). The use of Procrustes re-
siduals as a means of factoring out the spatial compo-
nent, instead, would have assumed that geography and
the other two data sets have the same measurement er-
rors. This is likely not the case since geographic coordi-
nates can be measured more accurately.

In the present study, we have compared the statistical
performance only for the case of matching two data sets
because the Mantel test is restricted to the direct compar-
ison of two data matrices at a time. In order to compare
three or more matrices, the Mantel test imposes solutions
where the variation in the two target matrices related to
other matrices being analyzed is factored out, just as we
have done. Another contribution of Procrustes fitting not
shared by many other methods (but see Kettering 1971;
Krzanowski and Marriot 1994) is that several multivari-
ate data sets can be analyzed concurrently. We do not
show this approach here, but it can be achieved by sim-
ply rotating each individual matrix to the same reference
or to a consensus (i.e., average) configuration. Our final
remark relates to the fitting technique used in this study.
Although we show the very good performance of the
least-squares Procrustes method, this is the simplest rota-
tional approach available. Because of the ample use of
Procrustes analysis in morphometrics, several other 
strategies, like resistant-fit techniques (see Siegel and
Benson 1982; Rohlf and Slice 1990), were developed
and provide even more robust assessments of matrix
concordance. This robustness is due to downweighting
the influence of unusual data points with high residuals,
and potentially will generate greater power and im-
proved interpretations regarding the congruence of mul-
tivariate data sets. There are many possible avenues for
expanding the applications of Procrustes analysis and
our study is an initiative to show ecologists and evolu-
tionary biologists the enhanced statistical performance of
PROTEST and the use of the Procrustes method as an
analytical tool for assessing the congruence between
multivariate data sets.
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