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Abstract.—Community ecologists face the challenge of summarizing consid-
erable amounts of information regarding species distributions and environmental 
conditions. Often, this challenge is met through the use of multivariate statistical 
approaches. Stream fish community ecologists, much like the broader ecological 
community, appear to favor the use of ordination methods over clustering ap-
proaches. One potential reason is due to the development of various tools to help 
us determine the interpretability or “significance” of ordination axes, whereas ecol-
ogists appear unfamiliar with the comparable tools available for examining cluster 
analysis. We use fish abundance data from two river systems to demonstrate several 
of these approaches. We demonstrate how the methods may be used to determine 
the relative strength of groups of sampling locations and species assemblages rela-
tive to the background variability. We contrast the methods to demonstrate their 
relative merits, both advantages and disadvantages, in studies commonly conduct-
ed by stream ecologists.
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Introduction

Understanding factors regulating species 
abundance and distribution remains a chal-
lenge to ecologists. Population ecologists typi-
cally focus on one or two species to determine 
the mechanisms controlling population abun-
dance and demography, yet often find it diffi-
cult to easily resolve the relationships in these 
systems. Community ecologists are faced with 
incorporating these challenges too, but they 
are multiplied many fold due to considering 
many species, often comparing these groups 
of species across numerous sites and a range 
of habitats. Working at the community level, 
we examine questions related to understand-

ing the roles of biotic, abiotic, spatial, and his-
torical factors in determining the structure of 
communities—a task requiring considerable 
amounts of data. We fortunately now have 
increasing abilities to obtain large amounts of 
environmental data using remote sensing and 
data loggers, but also face the challenges of 
having to summarize underlying relationships 
within such extensive data sets (Guisan and 
Zimmermann 2000). The simplest approaches 
to these problems involve summarizing sites 
with measures such as species richness, diver-
sity, or measures of “biotic integrity.” Yet such 
measures provide no indication of the types 
of species present, nor whether sites that have 
similar levels of richness, diversity or integrity 
even contain any species in common. Alter-
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native approaches to characterizing the biota 
have included the use of functional traits (e.g., 
reproductive, feeding; see Frimpong and An-
germeier 2010, this volume) or morphology 
(Tilman 1997). These latter approaches pro-
vide greater detail in contrasting the commu-
nity from one site with those found at another 
site, but as we begin to consider many sites, 
we can rapidly become overwhelmed with the 
amount of data and simple tabular or visual 
comparisons become limited in their useful-
ness. Similarly, when examining environmental 
conditions related to these sampling locations, 
we are faced with numerous additional vari-
ables. These approaches are hence deceptively 
simple; they either fail to summarize much of 
the complexity of the data—as with species 
richness, diversity, or biotic integrity—or re-
tain too much complexity that the underlying 
patterns remain unclear—as with tabular or 
visual comparisons. Developing a meaningful 
and complete summary of complex ecological 
data often requires more sophisticated multi-
variate statistical approaches.

Ecologists have used multivariate statis-
tical methods, such as ordination and cluster 
analysis, as standard analytical tools for many 
decades. Such methods provide mechanisms 
to summarize large amounts of commu-
nity and environmental data (e.g., Bowman 
et al. 2008; Winemiller et al. 2008; Poos et 
al. 2009). Community ecologists, includ-
ing many fish ecologists, have been quick to 
adopt, develop, and evaluate many approach-
es to guide researchers in the interpretation 
of ordination solutions (e.g., Grossman et al. 
1991; Jackson 1993; Peres-Neto et al. 2003, 
2005) ranging from graphical methods to vari-
ous statistical resampling methods. Some of 
these approaches have become standard tools 
for community ecologists. By contrast, there 
have been many methods developed to aid in 
the interpretation of cluster analyses in various 

fields (Milligan and Cooper 1985; Tonidandel 
and Overall 2004); yet community ecologists 
have virtually ignored such advances in their 
analyses. Ecologists still rely heavily on either 
simple visual assessments of the dendrograms 
from clustering or use approaches based on cut 
levels (i.e., identifying some arbitrary but spe-
cific level of resemblance that determines the 
point at which clusters will be defined and in-
terpreted (Figure 1; e.g. Joergensen et al. 2005; 
Morris et al. 2006; Kwak and Patterson 2007; 
Mehner et al. 2007). Although there is a clear 
necessity to include visual assessments in the 
interpretation of cluster analyses, cluster solu-
tions are known to be influenced by the choice 
of hierarchical clustering method; therefore, 
providing some more quantitative guidelines, 
to determine whether clusters are meaningful 
or methodological artifacts should improve 
our use of cluster analyses.

It is not clear why stream fish ecologists, 
or community ecologists in general, do not use 
these methods of assessing dendrogram struc-
ture, even though clustering approaches are 
commonly used. Using Web of Knowledge, we 
conducted a literature search, including papers 
published during 2007 and the first 8 months 
of 2008 using the keywords “fish community” 
and either “stream,” “lake” or “marine.” Us-
ing the papers identified, we examined each 
publication to determine whether multivari-
ate analyses (ordination and cluster analysis) 
were used, and we categorized them based 
on whether they were stream, lake, or marine 
in the type of system studied. From a total of 
123 papers that met the criteria, we found 29 
papers summarizing stream fish communities, 
and 5 of these papers (17.2%) used cluster-
ing as either the only multivariate approach 
or in conjunction with ordination methods, 
whereas 11 (37.9%) papers used ordination 
approaches. The remaining 13 (44.8%) used 
neither approach. Community ecologists (n 
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Figure 1.  Example of cut-off classification redrawn from Kwak and Patterson (2007). A cut level is 
arbitrarily defined at which point all members that are grouped at a stronger resemblance level are 
considered to be a cluster. For example, stations 1 and 6 and stations 3 and 4 would represent two 
clusters at a cut level of 75% resemblance.

= 49) studying lake fishes used these methods 
only about half as frequently (6.1% and 18.4%, 
respectively), whereas marine ecologists (n = 
45) used cluster analysis at comparable levels 
(17.8%) but ordination methods more fre-
quently (51.1%) than stream fish ecologists. 
Fish community ecologists used ordination 
methods twice or thrice more frequently (35% 
of all the fish community studies) than cluster 
analysis (13%), even though both approaches 
are used to summarize patterns in fish commu-
nities. We suggest that, in part, fish community 
ecologists use clustering less frequently than 
ordination methods because researchers are 
less certain about the degree of interpretabil-
ity of the solutions when using cluster analysis 
(i.e., they are unsure about whether the results 
represent strong or weak patterns, how many 
clusters should be considered to be present, 
and which parts of the dendrogram or tree 
show more reliable information).

It is therefore important that stream fish 
ecologists be aware of the advances that have 
occurred in assessing cluster analyses so they 
can feel comfortable with their use of cluster-

ing, be more confident in the interpretation 
of their results, and better able to distinguish 
meaningful relationships from more random 
ones. Stream ecologists may have some famil-
iarity with variants of these methods through 
their use in phylogenetics or bioinformat-
ics studies (e.g., Eisen et al. 1998; Kerr and 
Churchill 2001), but generally, most will have 
little to no familiarity with most or all of these 
approaches. Our goal is to introduce these 
methods, demonstrate their use with a com-
mon data set of Ontario stream fishes from two 
river systems, and identify some of the relative 
merits or shortcomings of these approaches in 
determining the number of clusters present, 
the reliability of the clusters, and measures 
quantifying the association of individual ob-
servations to the various clusters. Given the 
nature of our audience and our goal of mak-
ing potential users aware of these approaches, 
we focus on introducing these methods in an 
ecological setting rather than attempting a 
more extensive comparison of them through 
data simulations. Using these tools, all read-
ily available as libraries within the R software 
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(R Development Core Team 2008), ecologists 
may be better prepared to apply cluster analy-
sis independently or may also use them in con-
junction with ordination approaches to better 
display and understand data relationships. We 
introduce the methods using fish commu-
nity data, both species presence–absence and 
abundance, but the methods are equally well 
suited to analyze data based on environmental 
variables, ecological traits, morphology, or vir-
tually any other set of data.

Fish Community Data

Fish community data from each of two rivers 
from southern Ontario are used to demon-
strate the approaches in cluster analysis. The 
first river system sampled was the Sydenham 
River flowing into Lake St. Clair and the sec-
ond river system was Wilmot Creek, a smaller 
system flowing into Lake Ontario. Twenty lo-
cations in each system were used to provide a 
balanced design rather than having one system 
potentially dominating the various analyses. 
Sampling sites ranged in average width from 
1.2 to 11.3 m for Wilmot Creek and from 3.8 
to 45 m for the Sydenham River, with a stream 
length sampled of at least five times the average 
width. Sites also ranged in local habitat char-
acteristics. Wilmot Creek sites were character-
ized by a pebble-dominated substrate (55%), 
meandering stream, with generally intact 
mixed-wood riparian zone (mean 62.7%). In 
contrast, the Sydenham River sites were char-
acterized by clay-dominated substrate (72%), 
largely channelized stream, with overall low 
deciduous forest cover (22%).

Sampling was conducted using the On-
tario Stream Assessment Protocol (OMNR 
2007). For this, systematic single-pass elec-
trofishing (at 200 V, 60 Hz, 3 ms) was used 
at a rate of 5 m/s (OMNR 2007). Block nets 
were employed upstream and downstream to 

prevent fish movement out of the sites. All fish 
were retained in containers of water, identified 
to species, measured for length and weight, 
and released. The Sydenham River (Appen-
dix A) had a more diverse, mostly warmwater 
fish community with 55 species sampled and 
averaging approximately 17.7 species per site, 
whereas Wilmot Creek was a cold- to coolwa-
ter, salmonid-dominated system having 18 spe-
cies sampled and averaged only 6.1 species per 
site. We transformed the species abundance 
data (log x + 1) given that abundance values 
ranged over three orders of magnitude and we 
wanted abundant and less abundant species to 
have more similar influence in our comparison 
of sampling sites.

The two systems differed considerably 
with only 5 species in common out of 68 spe-
cies found in one or both systems. Therefore, 
we expected differences would be evident in 
the various clustering solutions examined, and 
these differences were an objective in select-
ing these contrasting fish communities (i.e., 
this example provides a comparison where we 
would expect at least two strong groups in the 
data set). As a means of demonstrating such 
differences and the degree of variability within 
the group of sites from each system, we carried 
out a correspondence analysis (CA) of the fish 
community data and plotted the observations 
(i.e., sampling sites) on the first two axes from 
this ordination (Figure 2). The first axis (20.3% 
of the total variation summarized) shows a 
strong contrast between the Sydenham River 
sites clustered closely on the left end of the first 
axis and the Wilmot Creek sites positioned on 
the right-hand end. The Sydenham sites are 
closely grouped on the second axis (10.2% 
of the variation), whereas the Wilmot Creek 
sites show much greater spread encompass-
ing what may be either one or two groups of 
observations, plus one additional observation 
positioned at the bottom of the plot—a point 
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Figure 2. First two axes from a correspondence analysis of the fish community abundance data from 20 
sites from Sydenham River (closed circles) and 20 sites from Wilmot Creek (open circles), to show the 
difference in observations from these river systems.

clearly different from the other observations, 
suggesting quite different species composition 
at that sampling site.

Short Review of Clustering Methods

Although our focus is on methods to assess 
the results of cluster analyses and not on the 
clustering methods themselves, it is necessary 
to briefly introduce the clustering approaches 
that we will use as examples. Not all of these 
clustering methods can be combined with all 
of the assessment methods that we review, ei-
ther because of methodological incompatibil-
ity or current lack of available software; how-
ever, such issues will be discussed below for 
each assessment method.

As with most statistical approaches, clus-
ter analyses come in a wide variety of flavors. 
There is not room to give an exhaustive survey 
of the various types of clustering here (see for 
example Legendre and Legendre 1998; Jain et 
al. 1999; Podani 2000 for such a survey); how-

ever, it is helpful to consider a distinction that 
separates cluster analyses into two broad class-
es: hierarchical and nonhierarchical. Put simply, 
hierarchical analyses lead to dendrograms (or 
“trees”). The branching structure of these trees 
indicates which objects (e.g., species; sites) are 
more similar to each other. In contrast, nonhi-
erarchical analyses simply allocate objects into 
a defined number of groups such that objects 
within groups are more similar to each other 
relative to objects between groups. In this paper, 
we consider one hierarchical approach—un-
weighted paired group method with arithmetic 
means (UPGMA)—and three nonhierarchi-
cal approaches—k-means, c-means and linear 
grouping analysis (LGA)—as representatives 
of these two major classes of methods.

UPGMA

The first step in UPGMA clustering is the cal-
culation of a resemblance matrix. Such a ma-
trix gives a measure of similarity between each 



508 jackson et al.

of the pairs of objects under consideration. 
The choice of resemblance measure may be of 
great importance (see Jackson et al. 1989; Leg-
endre and Legendre 1998; Poos et al. 2009 for 
critiques and advice on how to select a mea-
sure appropriate for a given data set). Here we 
use the chord distance when clustering sam-
pling locations and species (as recommended 
by Legendre and Legendre 1998; Hirst and 
Jackson 2007) and which is equivalent to the 
Euclidean distance on the standardized species 
abundances ( Jackson 1993). The UPGMA al-
gorithm may then be used to construct a tree 
such that similar pairs of objects are clustered 
together in the hierarchical branching struc-
ture. UPGMA is just one of many approaches 
for converting a resemblance matrix into a tree; 
we use it here because it provides a balanced 
solution to the conflicting problems of space 
contraction (or chaining) and space expansion. 
Note that the different choices in the form of 
hierarchical clustering (e.g., nearest neighbor, 
furthest neighbor, or UPGMA) can contribute 
to substantial differences in the branch lengths 
within and between clusters, which can influ-
ence the visual interpretation of the tree (see 
Legendre and Legendre 1998 for more detail 
on these issues). Furthest neighbor (complete 
linkage) clustering makes groups appear to 
be more different, whereas nearest neighbor 
(single linkage) tends to minimize or mask dif-
ferences between groups. These differences are 
particularly critical when interpreting visual 
presentations of hierarchical cluster solutions.

K-Means

K-means clustering contrasts with the UPGMA 
approach in that it is a nonhierarchical method 
(i.e. it results in only the number of groups, k, 
identified a priori by the researcher. The groups 
are not nested, but unique and nonoverlap-
ping. However, as with the UPGMA approach, 
each object to be clustered belongs to only a 

single group (Legendre and Legendre 1998). 
K-means is based on a criterion to minimize 
the within-group sum of squares (Hartigan 
and Wong 1979). With that criterion, the ap-
proach is generally based on using the Euclid-
ean-distance resemblance measure, although 
occasionally, the use of Mahalanobis distance 
may be used. As Euclidean distance is known 
to be prone to misrepresenting resemblances 
of observations based on species abundance 
(e.g., two sites having no species in common 
can be shown to be very similar to one another 
with Euclidean distance simply due to both 
having low species abundance), K-means may 
not be suitable for use with the original species 
data (Legendre and Legendre 1998). However, 
one can summarize such data through the use 
of ordination methods, resulting in a few axes 
summarizing major patterns in the communi-
ties; therefore, it provides a good companion 
approach with ordinations for community 
ecologists. For our example, we use the first 
two axes resulting from our correspondence 
analysis, as they provide a simple graphical 
example consistent with the preprocessing of 
stream fish community data.

K-means requires an initial estimate at 
group memberships (often based on random 
assignment), and then these memberships are 
refined so as to reduce the within-group sum 
of squares. It is possible that different initial 
configurations may produce different results, 
but most implementations of the approach ad-
dress this concern through multiple starting 
points and picking the one that optimizes the 
sum of squares criterion (Legendre and Leg-
endre 1998).

C-means

C-means is conceptually similar to K-means 
with one important difference (Rousseeuw 
1987). K-means assumes that an object can 
belong to only one group even if it shares char-
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acteristics of two or more groups; C-means 
relaxes this constraint and allows an object to 
have affinities to one or more groups and is 
identified as having its strongest association to 
one of the groups. Having this fuzzy condition 
of membership can provide important insight 
into whether an object might be viewed as 
having a very strong association to one group 
or might share characteristics of two or more 
groups.

In considering stream fish communities, 
we may have an assemblage at the headwater 
sites that comprises stenothermal cold- or cool-
water fish species and another assemblage of 
warmwater species found towards the mouth 
of the river. These two groups of species may 
have distinct differences in their abundance 
across the sites, but it is also possible that there 
may be some species exhibiting a broad distri-
bution across thermal regimes (i.e., euryther-
mal species) and they are found at most sites. 
In the K-means analysis, these species would 
need to be placed into either the coldwater or 
the warmwater assemblage in a two-group K-
means analysis, even though the eurythermal 
species would not readily match either of the 
other two groups of species. Alternatively, in 
the C-means, clustering the eurythermal spe-
cies could show an affinity to both groups of 
species, thereby providing a more meaningful 
ecological representation of the association 
of the eurythermal species to the other two 
groups. This temperature-related assemblage 
structure is a simple example of how nonexclu-
sive group membership might provide insight 
into how species relate to different habitat 
characteristics.

Linear Grouping Analysis

Linear grouping analysis (LGA) is also simi-
lar to K-means (Van Aelst et al. 2006). Like 
K-means, LGA considers an a priori defined 
number of groups, k, such that each observa-

tion belongs to only one group. Unlike K-
means, LGA fits a linear-regression model 
(i.e., model II regression) to the observations 
in each group (one model for each group). In 
our case, we will fit this regression model to 
the first two correspondence analysis axes of 
the fish community data. Group membership 
is chosen to minimize the sum of the squared 
Euclidean distances of the observations from 
this linear model. Like K-means, this minimiz-
ing set of group memberships is usually ap-
proximated by repeatedly and randomly divid-
ing the data into k groups in order to find the 
optimal solution, or at least approximate it for 
large data sets.

Methods Evaluating Inferences  
about the Cluster Structure of Fish 

Communities

Here we describe a number of methods for as-
sessing the results of cluster analysis and apply 
these methods to cluster analyses of our stream 
fish community data. Table 1 provides a quick 
summary and comparison of these methods.

Bootstrapping

Within the phylogenetic literature, there is a 
rich history of developing methods to evalu-
ate trees (i.e., the results of hierarchical cluster 
analyses). One commonly used approach in-
corporates resampling theory using the boot-
strap (Felsenstein 1985; Efron et al. 1996; Kerr 
and Churchill 2001; Tonidandel and Overall 
2004). Because biological data sets are rarely 
exhaustive, in the sense that all possible samples 
have been taken, inferences might be sensitive 
to the idiosyncrasies of the particular data set 
that was actually collected. The bootstrap ap-
proach to tree evaluation is used to assess the 
likelihood of this possibility. The general idea 
is to resample the data without replacement, 
calculate a tree based on the resampled data, 
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repeat numerous times, and determine the 
consistency with which particular branches of 
the tree occur from each resampled set of data 
relative to the tree calculated using the original 
data set.

Various measures have been developed in 
phylogenetic studies to assess this consistency 
and the bootstrap probability (BP) is one of 
the most commonly used (Felsenstein 1985). 
This approach, like many others, provides a 
measure that the observed tree is not an arti-
fact of the idiosyncrasies of the particular data 
that happened to be sampled, but rather a ro-
bust conclusion that would have been reached 
had different data been collected from the 
same statistical population(s). Index values 
approaching one for a branch within the tree 
indicate that the joining (or fusion) of the two 
components occurs in almost all trees based on 
the resampled data (i.e., there is strong support 
for this tree or part of this tree). Such a value is 
calculated for each branch within a tree. This 
measure and many others have been shown 
to be strongly biased, and Shimodaira (2002) 
provided an alternative called the alternative 
unbiased (AU) index, which he showed to 
have superior characteristics. The same boot-
strap resampling procedure is used to estimate 
the AU as in the BP, but the underlying calcula-
tion of the AU index differs somewhat. We re-
fer readers to Shimodaira (2002) for details on 
its derivation and performance characteristics. 
The interpretation of AU statistics is identical 
to that for BP statistics; high values of AU indi-
cate consistent groupings, and often values $ 
0.95 are used as the cut-off criterion for a group 
to show sufficient fidelity to be meaningfully 
different from a more random association.

We clustered the sampling locations us-
ing UPGMA, based on the chord distance. To 
evaluate the reliability of the resulting tree, we 
implemented the bootstrapped resampling al-
gorithm found in the R library pvclust (Suzuki 

and Shimodaira 2009). The bootstrapped tree 
solution shows a strong grouping of the Wilmot 
Creek sites (Figure 3). All 20 sites from that 
system are grouped together. The final node 
in this grouping has an AU = 0.99, indicating 
that essentially all resampled data sets group 
the Wilmot sites together rather than includ-
ing any Sydenham sites within this grouping. 
Therefore, the Wilmot sites are more similar to 
one another in terms of their fish community 
composition than they are to any of the Syden-
ham sites, and we have a means of providing 
statistical support to this differentiation. With-
in the Sydenham River sites, there is a division 
with one group (comprising sites S2, S7, S8, 
S16, S17, and S18) being consistently grouped 
together (AU = 0.95), but no other groups of 
Sydenham River sites were sufficiently consis-
tent in their grouping (i.e., having a value of 
AU $ 0.95) to provide a statistically identifi-
able group.

In a similar manner, we determined the 
species associations using UPGMA, based on 
the Euclidean distance matrix (e.g., Burcher 
et al. 2008) of the standardized species abun-
dances (i.e., the chord distance). The resulting 
tree (Figure 4) shows a series of clusters identi-
fied as being meaningful (i.e., AU values of 0.95 
or greater). The first “significant” cluster and 
the one showing the greatest overall similarity, 
contains longnose dace Rhinichthys catarac-
tae and rainbow darter Etheostoma caeruleum, 
both species being absent from all Sydenham 
sites but present in many Wilmot sites (Ap-
pendix A). The second most strongly associ-
ated cluster comprises warmwater species such 
as largemouth bass Micropterus salmoides and 
bluegill Lepomis macrochirus, species found in 
a few Sydenham sites but no Wilmot sites. A 
group of similar strength clustered ghost shin-
er Notropis buchanani and gizzard shad Dor-
osoma cepedianum, again based on their pres-
ence in only a few Sydenham sites. A cluster 
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Figure 3.  Unweighted paired group method with arithmetic means dendrogram of 40 sites sampled 
from two rivers in Ontario. The clustering was based on the Euclidean distance measure of standard-
ized fish community abundance data (i.e., chord distance). Twenty sites from Sydenham River are 
denoted as S1–S20 and sites from Wilmot Creek are identified as W1–W20. In the couplet of values 
presented at each node, the first value is the approximately unbiased (AU) estimate and the second 
one is the bootstrapped probability (BP) estimate. Note that not all nodes include the AU/BP estimates, 
simply to enhance visual clarity and legibility.

comprising coldwater species such as rainbow 
trout Oncorhynchus mykiss and mottled sculpin 
Cottus bairdii was due to their common abun-
dance at most sampling locations in Wilmot 
Creek, but their absence from Sydenham 
River sites. Such strong associations of species 
assemblages within a river system and their ab-
sence from the other system contributed to the 
separation of river sites in Figures 2 and 3. As 

the Sydenham River sites show great variation 
in their assemblage structure and a less defined 
resemblance of their sites based on these fish-
es, the sites are not closely grouped in either 
Figures 2 or 3. Sydenham River sites show the 
occurrence of species such as mimic shiner 
N. volucellus, shorthead redhorse Moxostoma 
macrolepidotum, longear sunfish L. megalotis, 
fantail darter E. flabellare, and greater redhorse 
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M. valenciennesi, at various locations within 
the set of sampled locations, but their absence 
from other Sydenham locations. Similarly, the 
final two assemblages contain white crappie 
Pomoxis annularis, black bullhead Ameiurus 
melas, green sunfish L. cyanellus, and common 
carp Cyprinus carpio in the first and brindled 

madtom Noturus miurus, pumpkinseed L. gib-
bosus, and spotted sucker Minytrema melanops 
in the second. These two assemblages again 
contrast a series of sites within the Sydenham 
from all other sites, and generally the pres-
ence of the first set of species is matched with 
the absence of the second set (and vice versa) 

Figure 4.  Unweighted paired group method with arithmetic means dendrogram of fish species from 40 
sites sampled from two rivers in Ontario. The clustering was based on the Euclidean distance measure 
of fish community abundance data standardized to range between 0 and 1 for each species. In the 
couplet of values presented at each node, the first value is the approximately unbiased (AU) estimate 
and the second one is the bootstrapped probability (BP) estimate. Note that not all nodes include the 
AU/BP estimates, simply to enhance visual clarity and legibility.
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within these locations. The species in these last 
four assemblages are all absent from all Wilmot 
Creek sites.

Through the clusters provided by these 
two bootstrapped dendrograms, we can define 
assemblages that are associated with particular 
sets of sampling locations. In various instances, 
researchers use ordination methods to deter-
mine the association between their variables 
and observations, but we can achieve similar 
goals with a bootstrapped cluster analysis and 
also determine which sets of sites or species 
represent statistically strong signals (i.e. sites 
having very similar species assemblages and 
sets of species representing strongly repeatable 
assemblages). In many instances, ecologists are 
seeking to determine species assemblages that 
are repeatable in order to better understand 
the mechanisms controlling species distribu-
tions and those species that may have strong 
interactions. Identifying groups of sites con-
taining similar species is an important step in 
determining which factors or mechanisms may 
be leading to community composition and 
maintenance, be those factors historical bio-
geographic ones or current abiotic and biotic 
conditions ( Jackson et al. 2001).

Nemec and Brinkhurst (1988) first intro-
duced the bootstrap methodology for clus-
tering analysis to ecologists, although their 
method requires replicate observations for 
each sampling location. Pillar (1999) provid-
ed a more generalized application of the boot-
strap approach to cluster analysis in ecology, 
with examples based on both simulated and 
plant vegetation communities. McKenna et al. 
(2008) provided one of the rare examples of 
a bootstrapped cluster analysis being used in 
community ecology in their study of Lake Erie 
ichthyoplankton. Although it has consider-
able promise, the bootstrapping approach has 
been largely ignored by ecologists in general. It 
is one of the few measures that allows a more 

formal evaluation of the fidelity of individual 
clusters and does not require that all observa-
tions be included in the final clusters that are 
interpreted as being meaningful, nor that the 
number of groups need be defined a priori (Ta-
ble 1). One technical caveat we note is that the 
underlying objects to be resampled (e.g., the 
fish species are resampled when bootstrapping 
the sampling location data set) are assumed to 
be independent. Given that it is unlikely that 
the abundances of various species within a lo-
cal assemblage are independent of one another, 
one should consider the bootstrap approach to 
provide a relative measure of the degree of as-
sociation rather than perhaps providing an es-
timate of the underlying statistical probability 
related to testing a null hypothesis.

Calinski and Simple Structure Indices

Choosing an appropriate k number of groups is 
important to successful nonhierarchical cluster-
ing, as determining the number of groups is the 
necessary and first step in determining which 
observations are grouped together. Therefore, 
as fish community ecologists, we need a suitable 
tool to aid us in making such assessments or we 
risk interpreting our data either less effectively 
or simply incorrectly. Two approaches can be 
followed in defining the number of groups. The 
first approach is based on the instance where the 
researcher has some fundamental reason for de-
fining k groups (e.g., for some specific reason, the 
researcher wants to divide the observations into 
three groups only). As this approach is based on 
some rationale defined by the researcher rather 
than a statistical approach, we will not consider 
its deliberation further. The other approach, 
and our focus here, is to calculate a measure of 
how good is the solution based on k groups and 
compare it to the solutions based on more or 
less groups being defined.

We consider two indices used to compare 
different choices for k in a K-means cluster 
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analysis, using the cascadeKM function in the 
R library vegan (Oksanen et al. 2009). The 
first measure considered is the Calinski index, 
which is essentially the analysis of variance 
statistic comparing the sum of squares among 
groups or clusters relative to the within-group 
sum of squares. The second measure is the 
simple structure index (SSI), which provides 
a measure integrating the maximum differ-
ence for each variable between clusters, how 
different the centroid values are for each vari-
able relative to the overall variable mean, and 
a measure of the size of the most contrasting 
cluster. In order to use these measures, we cal-
culate either index when defining two groups 
and recalculate the indices for three groups, 
four groups, and so forth. Where the index is 
maximized defines the number of groups pro-
viding the selected k-means solution.

The Calinski index proved to be a difficult 
one to reconcile with results in our data analy-
ses; this index selected k = 19 groups, which 

is clearly unreasonable (see Figure 5 and Table 
1). Tibshirani et al. (2001) found similar prob-
lems with the Calinski index in some of their 
simulation studies, particularly when variables 
were strongly correlated within groups. Anoth-
er potential issue with the Calinski index is that 
it is expected to perform best when the clusters 
are relatively equal in size; in fact, it is suggested 
to be the best measure in these cases (Milligan 
and Morgan 1985; R manual for Vegan library 
function cascadeKM; Oksanen et al. 2009). Al-
though two clusters are identical in size when 
only two clusters are considered (i.e., each 
containing the 20 sites from one of the two riv-
ers), neither measure suggests that this result 
is the optimal division. For the case of three 
clusters (Figure 6), the Sydenham River sites 
are all grouped together and the Wilmot Creek 
sites comprise two groups, with one contain-
ing 6 sites (W5 and W13–W17) and the third 
cluster containing the remaining 14 Wilmot 
sites—clearly presenting an imbalance in the 

Figure 5.  Two indices associated with the K-means cluster analysis solution relative to the number of 
clusters. For both indices, the peak in the index value indicates the optimal solution. Note that the Cal-
inski index continues to increase as the number of clusters increases, indicating that a suitable solution 
was not suggested by this measure.
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Figure 6. Correspondence analysis plot showing the three groups defined by K-means. The number of 
groups, k = 3, was selected by the simple structure index (SSI).

Table 1.  Summary and comparison of the cluster analysis assessment methods reviewed in this study. 
LGA = linear grouping analysis

   Simple  
  Calinski structure Gap Silhouette 
 Bootstrap index index analysis plots

Hierarchical assessment? Yes No No No No
Choose number of Yes Yes Yes Yes Yes
 groups?
Assesses affinities of Yes No No No Yes
 object to clusters? 
R package used pvclust vegan vegan lga cluster
Performance with our  Allowed us Selected an Selected Could not Selected two
 stream fish data to statistically unreasonably three groups, assess or three 
 assess which large number which performance groups, which
 species  (19) of groups. matches because gap matches
 assemblages   intuition. analysis is intuition.
 were    available in
 associated    R only for
 with which    assessing
 site clusters.   LGA results, 
    which were 
    not appropriate 
    for our data. 
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size of the various clusters. Therefore, research-
ers are cautioned that in cases where the size of 
their clusters differs, likely to be a commonly 
encountered case for stream fish ecologists, the 
Calinski index may not provide an ideal mea-
sure. By contrast, the SSI measure indicates 
that the three-cluster solution (shown in Fig-
ure 6) is best, which is intuitively reasonable 
given the three visually identifiable clusters in 
the correspondence analysis (Figure 6; Table 
1). When working with only two-dimension-
al ordination solutions as their input data, as 
we are here, researchers have the advantage 
of being able to compare visually whether the 
clusters appear to make sense too, but such op-
portunities are unavailable when working with 
higher dimensional data or with the raw spe-
cies data or habitat data.

We are unaware of any studies that have 
used either the Calinski or simple structure 
indices to analyze stream fish communities. 
However, Sowa et al. (2007) used the Calinski 
index to analyze environmental data in their 
work on riverine conservation in Missouri.

Gap Analysis

Gap analysis (Tibshirani et al. 2001) pro-
vides another method for selecting the num-
ber of groups, k. It was developed to address 
a problem with the following naïve approach 
to choosing k. Many clustering methods, such 
as K-means and linear grouping analysis, de-
termine group membership by minimizing 
a measure of the dispersion of points within 
each cluster. One might naively attempt to 
choose k by minimizing such a dispersion 
measure (e.g., pooled within-group variance 
or sums of squares). Such dispersion measures 
generally follow a monotonic decrease as the 
number of clusters increases, regardless of the 
cluster structure inherent in the data (i.e., the 
criterion is minimized when each object forms 
a different cluster), but the result is obviously 

less than informative. Hence researchers often 
determine the point at which this monotonic 
relationship begins to flatten. This point of 
flattening is interpreted as the point at which 
the number of clusters is meaningful and ad-
ditional clusters would be less informative; this 
approach is conceptually identical to the scree 
plot that has been used to determine the num-
ber of interpretable ordination dimensions 
( Jackson 1993; Peres-Neto et al. 2005). The 
problem that gap analysis seeks to overcome 
is that, in practice, such break-points are often 
not found or at least not simple to interpret.

Gap analysis provides a solution to this 
problem with virtually all clustering methods 
that (1) are based on a measure of within-
cluster dispersion, and (2) require a choice for 
the number of groups (Tibshirani et al. 2001). 
Most commonly however, it is applied to meth-
ods based on a squared Euclidean distance. In 
particular, gap analysis is currently only avail-
able for assessing the cluster structure inferred 
from a linear grouping analysis (highlighted 
in Table 1). Essentially, the method calculates 
the sum of squared Euclidean distances for all 
points within a cluster and pools these values 
from all k clusters to provide the pooled with-
in-cluster sum of squares (denoted as Wk). This 
observed Wk value is then compared against a 
null reference distribution of Wk values. This 
reference distribution assumes that each ob-
servation is equally likely to be included in any 
of the k groups (i.e., a uniform distribution). 
Specifically, the expected value (i.e., mean; Ek) 
of the reference distribution is calculated by 
repeatedly drawing multiple random samples, 
calculating Wk for each sample, and averaging 
these Wk values. The gap statistic is the dif-
ference between the expected and observed 
values, log(Ek) – log(Wk). This statistic is cal-
culated for various numbers of clusters and, 
where maximized, provides the estimate of the 
number of clusters in the data.



517determining the number of clusters

Gap analysis was used to estimate the 
number of clusters in a linear grouping analy-
sis of our fish community ordination and im-
plemented with the R library lga (Harrington 
2008). The plot (Figure 7A) of the logarithm 
of the pooled within-cluster sum of squares 
shows the characteristic decline as the num-
ber of clusters increases in both the observed 
data (Wk) and that expected based on multiple 
samples drawn from the reference distribu-
tion (Ek). The plot of the gap statistic relative 
to the number of clusters (Figure 7B) consid-
ered shows a different pattern, peaking at three 
clusters and then declining, thereby indicat-

ing three clusters as being the optimal solu-
tion. However, the value for Ek is based on b 
reference samples (i.e., b is the number of re-
sampled data sets used; e.g., b = 10,000), and a 
standard error associated with this estimate can 
be derived also. Figure 7B also shows standard 
errors associated with the estimates for each 
number of clusters. As the procedure is based 
on a resampling approach, it is important that 
sufficient numbers of reference samples are 
used in estimating the expected value ( Jackson 
and Somers 1989). For example, in this study, 
the repeated use of 1,000 reference samples 
provided different outcomes, which would 

Figure 7. (A) Plot of gap analysis results showing the log-transformed values of the observed and ex-
pected statistics versus the number of clusters used in the solution. (B) Plot showing the correspond-
ing gap statistic and standard errors relative to the number of clusters. The statistic peaks with three 
clusters, but there is considerable overlap in the standard errors between the three and four cluster 
solutions.

A B
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have lead to anywhere from two to four cluster 
solutions being concluded as being the “best” 
solution. However, the use of a greater number 
of simulations (i.e., 10,000 in this case) result-
ed in a stable outcome of a two-cluster solution 
(Figure 7).

Although Tibshirani et al. (2001) indi-
cated that the gap statistic can be used with 
virtually any type of clustering, within R it is 
associated with the library lga, which provides 
a very specific form of cluster analysis. Having 
defined k = 2 as being the best solution from 
the gap analysis, we determined the group as-
signments, and these are shown in Figure 8. 
From the results shown, we can see that the 
assignment of observations to the different 
groups does not make intuitive sense and dif-
fers considerably from the results obtained 
from the other clustering solutions. Three of 
the Wilmot Creek sampling sites have been 
grouped (open circles in upper right region 

of Figure 8) with the set of Sydenham sites. 
Although this group best fits the criterion for 
the linear group analysis, the community data 
being analyzed are not well handled through a 
linear model (highlighted in Table 1). We have 
used a two-dimensional summary of the com-
munity data by using the first two axes from a 
correspondence analysis. There is no reason to 
assume that linear relationships within an ordi-
nation plot should result in linear relationships 
between axes for individual groups of observa-
tions. Similarly, given that community data are 
frequently rich in zero abundance values, this 
linear model is not likely to provide a good 
summary of group structure within the origi-
nal abundance data.

For general use with community data, 
we do not advocate the use of the LGA ap-
proach given the underlying relationships in 
such data and the problems posed by impos-
ing multiple linear relationships to fit to the 

Figure 8. CA plot showing results of gap analysis and linear group analysis defining a two-group solu-
tion. Note that three Wilmot Creek sites (open circles) have been grouped with the Sydenham River 
sites (closed circles).
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data. For example, if stream habitat data were 
being analyzed to determine relationships and 
groupings of sampling locations, the linear 
relationship between some habitat variables 
may provide excellent data for this methodol-
ogy. Given that different ecoregions or smaller 
units may differ in the linear relationships (i.e., 
slope, intercept) between stream habitat vari-
ables, the linear grouping analysis approach 
would be well suited to identify these relation-
ships and therefore group these sites. Similarly, 
if a researcher is focused on only a few species 
that tend to be encountered at most sites, this 
method may hold promise too. However, the 
extension of gap analysis to other clustering 
approaches may provide interesting opportu-
nities for further methodological research, and 
it is to be encouraged. 

Silhouette Plots

Silhouette plots (Rousseeuw 1987) provide a 
graphical and quantitative approach to deter-
mine the optimal number of clusters. Silhou-
ette plots can be used to identify the strength 
of clusters individually and collectively, as well 
as how well each observation matches its clus-
ter assignment. The name is derived from the 
plot’s resemblance to a silhouette of a city where 
each object clustered represents the equiva-
lent of a building in the silhouette. Silhouette 
plots are typically used with nonhierarchical 
clustering approaches, and these can include 
techniques such as K-means or c-means. The 
approach works with clusters containing two 
objects or more (i.e., it cannot be used to eval-
uate singleton observations). The underlying 
premise is to measure the association between 
object i (a sampling location in this case) with 
other objects from the same group or cluster 
and the strength of this association to object 
i’s relationship to objects in other clusters. The 
associated measure, s(i), ranges from –1 to +1, 
where a value close to +1 indicates that object 

i is strongly associated with other members of 
the cluster in which it is grouped. As s(i) de-
creases and approaches 0, it indicates that ob-
ject i is not well associated with any particular 
cluster. Values less than 0 indicate that object 
i is actually better suited for inclusion within 
a different cluster than the one in which it has 
been placed. It may seem counterintuitive that 
a cluster analysis could define groups in which 
members are not well suited for inclusion with-
in their respective group but are in fact better 
suited for inclusion into another group. Cluster 
analysis (and agglomerative, hierarchical clus-
tering in particular) is known to result in such 
outcomes depending upon the characteristics 
of the data and the type of resemblance mea-
sure and clustering algorithm used ( Jackson et 
al. 1989; Legendre and Legendre 1998; Poos 
et al. 2009), perhaps leading researchers to be 
somewhat wary of cluster analysis in general. 
However, approaches such as silhouette plots 
allow us to better determine whether such 
groupings are informative or not.

As the index s(i) is calculated for each ob-
ject, we can determine the range of values ob-
tained for all objects within a group, an average 
for each group, and an overall average value for 
the entire tree. Results from a cluster analysis 
can be examined for group structure ranging 
from two groups and up. Generally, one will 
try different numbers of groups in order to de-
termine how the resulting group average values 
and overall tree indices change in response. 
The number of groups leading to where the 
overall silhouette average is maximized pro-
vides a means of estimating how many groups 
of objects should be considered.

Silhouette plots can be used when clus-
tering is done on the original data set or us-
ing variables representing multivariate axes. 
We use the site scores from the first two cor-
respondence analysis axes, as this case pro-
vides an example that can be considered 



520 jackson et al.

easily in terms of its graphical nature (Figure 
9). Various distance measures can be used to 
quantify how each object relates to all others, 
and we have used Euclidean distance again for 
this example as it provides a simple geometric 
measure of resemblance (i.e., our straight-line 
distance measure) and is appropriate given 
that we are quantifying distances in ordination 
space. We then carried out a series of C-means 
cluster analyses, sequentially increasing the 
number of groups in each analysis in order to 
determine which solution provides the best 
outcome based on the average silhouette index 
and therefore how many groups we should in-
terpret. The C-means clustering and silhouette 
plots were calculated using the fanny function 
in the R library cluster (Maechler et al. 2009).

As an example, we show the results ob-
tained from the three-group solution: Group A 
for the Sydenham River and Groups B and C for 

Wilmot Creek. We see that in Group A, almost 
all Sydenham sites have silhouette widths, s(i) 
exceeding 0.80 (Table 2; Figure 9), the value 
recommended to suggest strong membership 
(Rousseeuw 1987). Two Sydenham sites, S19 
and S20, had values between 0.60 and 0.80, 
which suggests good agreement with the other 
group members. Therefore, the Sydenham Riv-
er sites all tend to form a strong cluster, and this 
is supported by the average silhouette width be-
ing 0.89 for this group. The Wilmot Creek sites 
were divided into two clusters: B and C. Cluster 
B had an average silhouette width of 0.60 and 
ranged from 0.19 to 0.71, suggesting that this 
final grouping is weakly defined relative to the 
other two clusters. The remaining Wilmot sites 
clustered into the final group, cluster C, also 
showed very strong group membership and 
comprised W5 and W13–W17 sites with an av-
erage silhouette width of 0.87.

Figure 9.  Silhouette plot results for a three-group solution. Each bar represents one observation, and 
the longer the bar, the stronger the association between that observation and its cluster. The numbers 
to the right of the bars represent the number of observations within the cluster and the average silhou-
ette index for that group (e.g., Group A has 20 sites and an average silhouette value of 0.89, indicating 
a strongly defined cluster). Values greater than 0.8 indicate a strong affinity of the group members to 
resemble one another based on their species composition. 
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Table 2.  Results from the C-means clustering and silhouette analysis of the 40 sampling locations. The 
silhouette width [S(i)] provides a measure of how strong the affinity is between an individual observa-
tion and the group to which it has been assigned. Values range from –1 to +1, and values exceeding 
0.80 indicate a strong affinity. The probability of membership for each sampling location into each of 
the three defined groups is shown under the three group headings. All locations from Sydenham River 
(S1–S20) are grouped together, whereas the sites from Wilmot Creek (W prefix) are clustered into two 
groups.

 Sampling     Sampling 
 site S(i) Group A Group B Group C site S(i) Group A Group B Group C

 S1 0.93 100 0 0 W1 0.69 0 99 0
 S2 0.93 100 0 0 W2 0.59 1 98 2
 S3 0.93 100 0 0 W3 0.67 0 99 1
 S4 0.92 100 0 0 W4 0.24 26 53 21
 S5 0.85 98 1 1 W5 0.85 1 1 99
 S6 0.81 97 2 2 W6 0.70 0 100 0
 S7 0.92 100 0 0 W7 0.68 1 98 1
 S8 0.90 100 0 0 W8 0.71 0 100 0
 S9 0.89 99 0 0 W9 0.71 1 98 1
 S10 0.91 100 0 0 W10 0.53 1 96 3
 S11 0.91 100 0 0 W11 0.65 0 99 1
 S12 0.91 100 0 0 W12 0.19 7 75 18
 S13 0.91 100 0 0 W13 0.88 0 0 100
 S14 0.91 100 0 0 W14 0.86 0 1 99
 S15 0.92 100 0 0 W15 0.88 0 0 100
 S16 0.93 100 0 0 W16 0.87 0 0 99
 S17 0.93 100 0 0 W17 0.87 0 1 99
 S18 0.92 100 0 0 W18 0.71 1 99 1
 S19 0.76 94 3 4 W19 0.68 2 96 2
 S20 0.66 87 5 7 W20 0.71 1 98 1

Examining the placement of observations 
into the groups shows similar information, 
as can be inferred between the groups. For 
example, W4 shows a low silhouette width 
(0.24) and was placed into cluster B, but only 
with a probability of 0.53 meaning that there 
was almost an equal likelihood of either be-
longing in cluster B or not belonging in clus-
ter B. Such results allow us to view clusters 
A and C as being well defined and would be 
good candidates for detailed interpretation of 
their fish communities and having different 
assemblage being present in each of the two 
groups. However, a researcher would want to 
demonstrate much greater caution in consid-
ering cluster B as representing a well-defined 
group of sampling locations as they are not 
characterized by a similar set of fish species 
across these sites.

We are not aware of silhouette analysis be-
ing used in a study of fish communities, stream 
or otherwise; however, Schaefer and Wilson 
(2002) provided an example of its use in the 
genetic structure of walleye populations in Lake 
Erie. Again, this method has clear promise in 
allowing researchers to better identify the fidel-
ity of observations to groups (clusters) and the 
relative strength of those groups, once the issue 
of the number of groups has been resolved.

Comparability of Defined Clusters

The Sydenham River and Wilmot Creek rep-
resent fish assemblages from two completely 
different systems in Ontario, Canada. These 
systems differed not just in their locality, but 
also in the types of local habitat conditions 
(e.g., pebble/gravel substrates versus clay), 
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thermal regime (cool versus warm), and eco-
zone (mixed deciduous–coniferous versus de-
ciduous forest). In total, only five species were 
found in both systems. As such, we would ex-
pect that all methods would produce clusters 
that clearly segregated the fish assemblages be-
tween those two areas.

Examining the results of the interpretable 
clusters defined by the various methods pro-
vides interesting comparisons (Table 3). The 
approach based on bootstrapping provides 
a hierarchical clustering of all observations 
(or species), but not all members of the tree 
will necessarily represent “significant” groups 

Table 3.  Results of the cluster membership defined by each of the four methods considered in the 
study. Note that some of the methods group all observations, whereas other methods (e.g. bootstrap-
ping) may selectively included observations and not retain others in clusters. SSI = simple structure 
index; LGA = linear grouping analysis.

 Bootstrapping SSI/k-means Gap analysis/LGA Silhouette plots

S1 – A A A
S2 A A A A
S3 – A A A
S4 – A A A
S5 – A A A
S6 – A A A
S7 A A A A
S8 A A A A
S9 – A A A
S10 – A A A
S11 – A A A
S12 – A A A
S13 – A A A
S14 – A A A
S15 – A A A
S16 A A A A
S17 A A A A
S18 A A A A
S19 – A A A
S20 – A A A
W1 B B B B
W2 B B B B
W3 B B B B
W4 B B B B
W5 B C A C
W6 B B B B
W7 B B B B
W8 B B B B
W9 B B B B
W10 B B B B
W11 B B B B
W12 B B B B
W13 B C B C
W14 B C B C
W15 B C A C
W16 B C A C
W17 B C B C
W18 B B B B
W19 B B B B
W20 B B B B
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or clusters. In Table 3, we see a strong group 
of Wilmot Creek sites in a single cluster, 
whereas only a subset of the Sydenham sites 
is grouped together. These groupings differ 
substantially from those produced by the oth-
er three methods and, at first consideration, 
may suggest that the technique performs dif-
ferently. However, note that for the purposes 
of our demonstration, we used the standard-
ized species abundance data in the bootstrap 
analysis, whereas we used ordination axes as 
the input to the other methods to better pres-
ent the findings—this alone may contribute 
to differences between the bootstrapped so-
lution and the other methods. We include 
both approaches (some based on the original 
data and some based on the ordination axes) 
to highlight the flexibility of methods that 
can be used, and also to note limitations or 
problems that may arise when trying to use a 
method with data types that may not be ap-
propriate or well suited. Furthermore, our 
use of different forms of input data are also 
to suggest to the reader that there may be dif-
ferent approaches that can be applied to their 
data regardless of whether it represents pres-
ence–absence data through to continuous, 
abundance data. Although the bootstrapping 
method did not group the various Sydenham 
River sites together, all other methods did 
and showed them to be a strongly defined 
cluster, consistent with the results shown in 
the CA plot (Figure 2). However, these three 
methods differ in how they defined group 
membership for Wilmot Creek sites W5 and 
W13–W17. Where such differences arise may 
help define observations for which we are 
less certain in their affinity, but the consis-
tent grouping of most observations provides 
a much greater degree of confidence in our 
findings and can help stream fish ecologists 
better define useful species assemblages and 
groups of sites sharing similar assemblages.

Summary and Conclusions

Stream community ecologists are generally 
faced with challenges in summarizing their 
data through the use of various ordination and 
clustering approaches. Ecologists have gener-
ally incorporated a variety of the assessment 
tools that have been introduced to help guide 
in the assessment of ordination solutions, but 
generally have not incorporated the compa-
rable advances available for cluster analyses. 
Our goal has been to demonstrate a series of 
the more promising approaches for identifying 
site and species groupings. With hierarchical 
clustering approaches, the use of bootstrap-
ping techniques provide means of quantifying 
the overall structure and how many clusters 
should be considered to be interpretable (Ta-
ble 1). The bootstrap approach provides great-
er detail about the hierarchical structure of the 
results. It allows the highlighting of particular 
areas within a dendrogram that show highly 
consistent clustering over many bootstrapped 
outcomes, identifying groups having strong 
fidelity. Bootstrapped analysis may provide a 
conservative estimate of what portions of the 
dendrogram can be interpreted, in particular 
if the 95% level is used as the cut-off criterion. 
As a consequence, one may find that large 
amounts of the dendrogram may be consid-
ered as “nonsignificant” (i.e., lacking identity 
to a particular group) in many solutions—an 
outcome that may be less satisfying for many 
researchers but which should serve to caution 
researchers on potential overinterpretation of 
their findings.

Both gap analysis and bootstrapping are 
based on resampling approaches, and it is im-
portant that researchers use a large number of 
resampled data sets in order to derive stable 
solutions ( Jackson and Somers 1989). Given 
that computational demands generally no lon-
ger restrict our abilities to conduct large resa-
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mpling exercises, a conservative standard may 
be to apply 10,000 bootstrapped data sets in 
the bootstrapped and gap analysis approaches. 
As the implementation of gap analysis within 
R appears to be limited currently to its connec-
tion with linear group analysis, and given that 
community data typically do not demonstrate 
strong linear relationships (e.g., many zero 
values, nonlinear relationships in abundance 
between species), it cannot be recommended 
as a general approach for analyzing fish com-
munities (Table 1). However, it may be a very 
useful approach to consider with the environ-
mental data associated with community analy-
ses. Once gap analysis becomes more widely 
available as a diagnostic tool for other cluster-
ing solutions, it may provide an interesting and 
valuable tool for community ecologists.

Silhouette plots provide researchers with 
different tools to assess both the number of 
clusters suitable for interpretation and how well 
suited each observation is matched to each clus-
ter of observations. The approach can be used 
with either hard or fuzzy clustering, and the 
fuzzy clustering approach allows the assessment 
of whether points match strongly with the group 
in which they are placed. Knowing whether an 
observation is very well matched to other ob-
servations or whether such an observation may 
be almost equally well suited with another set 
of observations can provide valuable insight to 
ecologists. For example, this information would 
allow a researcher to know how tightly grouped 
a set of sampling observations may be or, alter-
natively, whether a particular species of fish is 
part of a strongly defined assemblage or whether 
that species may share characteristics with mul-
tiple assemblages. Clearly, such insight can aid 
ecologists in better understanding the strength 
of the associations that they see in community 
analyses.

Karr and Martin (1981) once challenged 
the utility of principal component analysis in 

community ecology by suggesting that one 
could interpret results obtained from ran-
dom data. Although ordination and cluster-
ing methods will provide solutions even if 
the data are random, many studies advancing 
methods on interpreting ordination results 
have provided tools that, when applied ap-
propriately, can allow us to easily address the 
concerns raised by Karr and Martin—we can 
now dismiss such concerns through the appro-
priate analysis of our data. Many community 
ecologists have readily adopted these meth-
ods and contributed to their development in 
many cases. There is also a rich source of ap-
proaches that allow stream fish ecologists to 
move beyond the standard approaches that 
we have used in cluster analyses. Many of 
these methods are used commonly in other 
fields but have been virtually unused by fish 
ecologists—a situation likely due to research-
ers not knowing about their existence and at-
tributes. Many ecologists may have avoided 
cluster analysis due to the less formal ways of 
determining the strengths of the summarized 
relationships—we can now move beyond 
those concerns. These methods provide an 
excellent addition to our quantitative toolbox 
and we advocate their use in conjunction with 
the visual interpretation of the dendrograms. 
We caution against simply interpreting cluster 
analysis solutions solely from a visual assess-
ment as we see this as being analogous to sim-
ply interpreting whether bivariate data are well 
correlated solely by looking at a scatterplot and 
not evaluating the relative strength of the as-
sociation through quantitative measures such 
as correlation coefficients—both visual and 
quantitative approaches work together to en-
hance our interpretation and provide support 
in convincing others about underlying ecolog-
ical structure. All methods we have presented 
are freely available in R (R Development Core 
Team 2010), thereby providing fish ecologists 
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with additional tools to better define patterns 
in community data. As community ecologists 
have implemented many approaches to better 
understand our ordination solutions, it is now 
time to consider doing the same with our clus-
ter analysis approaches.
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Appendix 1.  List of the species common and scientific names and the number of sites encountered in 20 
sites from each the two watersheds sampled. Sydenham River denoted by S and Wilmot Creek by W.

 Name S W  Name S W

American brook  Lampetra appendix 0 3 Black bullhead Ameirus melas 7 0
 lamprey 
Sea lamprey Petromyzon marinus 0 2 Yellow bullhead A. natalis 5 0
Longnose gar Lepisosteus osseus 7 0 Brown bullhead A. nebulosus 1 0
Gizzard shad Dorosoma cepedianum  0 Channel catfish Ictalurus punctatus 6 0
Coho salmon Oncorhynchus kisutch 0 8 Stonecat Noturus flavus 10 0
Rainbow trout O. mykiss 0 20 Tadpole madtom N. gyrinus 6 0
Chinook salmon O. tshawytscha 0 6 Brindled madtom N. miurus 3 0
Atlantic salmon Salmo salar 0 9 Blackstripe Fundulus notatus 3 1
     topminnow
Brown trout S. trutta 0 18 Brook stickleback Culaea inconstans 1 0
Brook trout Salvelinus fontinalis 0 2 White perch Morone americana 1 0
Northern pike Esox lucius 5 0 White bass M. chrysops 1 0
Chain pickerel E. niger 0 1 Rock bass Ambloplites rupestris 16 0
Goldfish Carassius auratus 1 0 Green sunfish Lepomis cyanellus 11 0
Spotfin shiner Cyprinella spiloptera 15 0 Pumpkinseed L. gibbosus 11 0
Common carp Cyprinus carpio 8 0 Bluegill L. macrochirus 2 0
Striped shiner Luxilus chrysocephalus 1 0 Longear sunfish L. megalotis 8 0
Common shiner L. cornutus 9 0 Smallmouth bass Micropterus dolomieui 4 0
Redfin shiner Lythrurus umbratilis 11 0 Hornyhead chub Nocomis biguttatus 1 0 
Largemouth bass M. salmoides 3 0 White crappie Pomoxis annularis 6 0
Emerald shiner Notropis atherinoides 3 0 Yellow perch Perca flavescens 1 0
Ghost shiner N. buchanani 3 0 Walleye Sander vitreus 2 0
Spottail shiner N. hudsonius 1 0 Eastern sand darter Ammocrypta pellucida 3 0
Mimic shiner N. volucellus 11 0 Greenside darter Etheostoma blennioides 11 0
Northern redbelly Phoxinus eos 4 0 Rainbow darter E. caeruleum 0 6
 dace      
Bluntnose Pimephales notatus 20 0 Fantail darter E. flabellare 3 0
 minnow
Fathead minnow P. promelas 1 0 Least darter E. microperca 6 0
Blacknose dace Rhinichthys atratus 3 7 Johnny darter E. nigrum 20 4
Longnose dace R. cataractae 0 6 Logperch Percina caprodes 7 0
Creek chub Semotilus 9 5 Blackside darter P. maculata 18 7
   atromaculatus
Quillback Carpiodes cyprinus 1 0 Mottled sculpin Cottus bairdii 0 17
white sucker Catostomus commersonii 19 6 Slimy sculpin C. cognatus 0 1
Northern hog Hypentelium nigricans 6 0 
 sucker   
Spotted sucker Minytrema melanops 2 0    
Silver redhorse Moxostoma anisurum 10 0    
golden redhorse M. erythrurum 11 0    
Shorthead M. macrolepidotum 9 0
 redhorse    
Greater redhorse M. valenciennesi 2 0    
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