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Assessing the robustness of randomization tests: examples from
behavioural studies

PEDRO R. PERES-NETO* & JULIAN D. OLDEN*†

*Department of Zoology, University of Toronto
†Colorado State University, Department of Biology

(Received 8 July 1999; initial acceptance 7 October 1999;
final acceptance 21 June 2000; MS. number: A8537R)

Behavioural studies are commonly plagued with data that violate the assumptions of parametric statistics.
Consequently, classic nonparametric methods (e.g. rank tests) and novel distribution-free methods (e.g.
randomization tests) have been used to a great extent by behaviourists. However, the robustness of such
methods in terms of statistical power and type I error have seldom been evaluated. This probably reflects
the fact that empirical methods, such as Monte Carlo approaches, are required to assess these concerns.
In this study we show that analytical methods cannot always be used to evaluate the robustness of
statistical tests, but rather Monte Carlo approaches must be employed. We detail empirical protocols for
estimating power and type I error rates for parametric, nonparametric and randomization methods, and
demonstrate their application for an analysis of variance and a regression/correlation analysis design.
Together, this study provides a framework from which behaviourists can compare the reliability of
different methods for data analysis, serving as a basis for selecting the most appropriate statistical test
given the characteristics of data at hand.
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Behavioural studies often contain data that violate the
statistical assumptions of parametric tests (i.e. normality,
homogeneity of variances, independence of errors
and balanced designs). Consequently, nonparametric
approaches have been widely applied in the behavioural
sciences rather than parametric approaches. These tests
usually impose rank transformations in order to relax
some assumptions and obtain the probability distribution
for a given test statistic under the null hypothesis (e.g.
U, F, �2). However, although not readily acknowledged,
classic nonparametric tests are also constrained by some
assumptions. For small sample sizes, exact distributions
can be obtained by finding all possible combinations of
ranks, whereas with larger sample sizes asymptotic
approximations are necessary (see Mundry & Fisher
1998). In both cases, nonparametric approaches assume
that observations are independent and although the
samples do not have to follow any particular population,
they are assumed to all have the same form or shape
(Kruskal & Wallis 1952; Motulsky 1995). When these
assumptions are not met there is generally a loss in the
power of the test (Kruskal & Wallis 1952).
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As a result of the problems associated with parametric
and classic nonparametric tests, a great deal of attention
has recently been focused on the possible enhanced
statistical power that novel distribution-free methods,
such as randomization tests, can provide researchers
(Potvin & Roff 1993; Adams & Anthony 1996; Manly
1997). Randomization tests are a class of distribution-free
methods where the test statistic is contrasted against a
null distribution that is empirically constructed using
the data at hand. In the broadest sense, a randomization
test begins with choosing a test statistic reflecting the
question of interest and calculating it for the original
data. Next the observed test statistic is contrasted against
a null distribution, which is generated by randomly
allocating the data and calculating the test statistic a
larger number of times in order to nullify the hypothesis
in question. Under the null hypothesis the observed test
statistic is just one possible value from the null distri-
bution and its likelihood can be evaluated as the pro-
portion of permuted values that are equal to or more
extreme than the observed. Since null distributions are
generated empirically, they do not make any assumptions
regarding the type of population from which the samples
were drawn, and the original data is used rather than
their ranks (Manly 1995). Interestingly, randomization
tests can also use rank-transformed data in order to
avoid some of the assumptions associated with classic
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nonparametric tests. Furthermore, due to their empirical
nature (i.e. entirely based on the sample data), random-
ization methods offer great versatility, permitting the
investigator to assess the statistical significance (i.e. the
degree of departure from random) of nearly any par-
ameter of interest. This even includes parameters for
which the probability distribution has yet to been inves-
tigated. Examples of such plasticity can be found in a
variety of biological studies (e.g. Roff & Bentzen 1989;
Solow 1990; Jackson 1995; Manly 1998).

Although randomization tests commonly involve large
computational effort, they are now being increasingly
used due to the advancement and availability of
appropriate computer software. As a result, behaviourists
are starting to incorporate these methods in their studies
(e.g. Johnston & Johnson 1989; Hemelrijk 1990; Dagosto
1994; Adams & Anthony 1996; Thomas et al. 1996;
Goldberg & Wrangham 1997; Thomas & Poulin 1997;
Mundry 1999). However, the robustness of such methods
in terms of statistical power and probability of type I error
have seldom been evaluated, being generally assumed
that randomization tests are better buffered against non-
normality (e.g. bimodal and highly skewed distributions),
homogeneity of variances and problems associated with
small sample sizes. The rationale behind this belief is
based on a limited number of comparative studies. For
instance, Kempthorne & Doerfler (1969) showed that
under certain circumstances, randomization methods are
more powerful than classic nonparametric methods (also
see Mundry 1999 and references therein). Romano (1989)
showed that under common statistical assumptions,
parametric and randomization tests produce similar levels
of power for large sample sizes (Romano 1989), and
Bradbury (1987) and Routledge (1997) found that
randomization tests can be more robust for small sample
sizes. Nevertheless, classic tests can be still more robust
than randomization tests when assumptions are only
slightly violated (Lindman 1974; Chen & Chen 1998),
although the power and type I error levels will be
different from what are expected based on the original
assumptions (Heilizer 1964). Although randomization
tests are essentially free of distributional assumptions, it is
not to say that they are equally robust in all situations
where statistical assumptions are violated. For instance,
Manly (1995) shows that randomization approaches to
compare means are sensitive to sample size, unequal
variation and the type of distribution. Randomization
tests also can be affected by the degree of dependence of
observations (Manly 1998). Anderson & Legendre (1999)
also show that randomization protocols for multiple
regression are sensitive to the type of distribution of the
data.

Altogether, there is a lack of sufficient evidence sup-
porting the commonly held notion that randomiz-
ation tests are more robust than other statistical methods
when statistical assumptions are not met (Manly 1997).
This probably reflects the fact that power and type I
error rates estimates for randomization tests have to be
evaluated empirically, requiring customized computer
routines and frequently an overwhelming amount of
computational effort (e.g. Peres-Neto & Marques, in
press). With these constraints, behaviourists are com-
monly unable to evaluate the robustness of their rand-
omization test and thus are often forced to rely on the
results of simulation studies, which might be based on
types of data that do not follow the characteristics of their
own data. Consequently, the aim of this paper is to
address these issues and provide a framework for evaluat-
ing the robustness of randomization tests. Specifically,
our objective is two-fold: (1) outline a statistical protocol
for estimating the power and the probability of type I
error of randomization tests; (2) illustrate the implemen-
tation of these protocols using behavioural examples.
These protocols will provide researchers with the ability
to assess and compare the robustness of statistical
approaches, thus serving as a basis for selecting the most
appropriate test given the characteristics of their data.
STATISTICAL POWER AND DISTRIBUTIONAL
ASSUMPTIONS

Statistical power is defined as the probability of a
statistical test rejecting the null hypothesis, when the
null hypothesis is truly false. It is an important com-
ponent in the process of statistical hypothesis testing,
specifically when designing studies and/or to provide a
degree of confidence when a null hypothesis is not
rejected. There are two types of power analysis: a priori
(or prospective) analysis and a posteriori (or retrospective)
analysis. A priori power analysis is conducted before
starting a study or experiment to determine the sample
size required to obtain acceptable levels of power, or to
estimate how large an effect size would have to exist for
acceptable power to be achieved. A posteriori power
analysis is used mostly in interpreting results of a statisti-
cal test that has already failed to reject the null hypoth-
esis. In both cases, a meaningful biological or behavioural
effect size has to be established in order to perform power
calculations. Although not directly relevant to this study,
it is important to emphasize that the goal of a posteriori
power analysis is not to verify if the null hypothesis was
not rejected because the experiment lacked sufficient
power to detect an effect based on the original data. That
is uninformative because if the test already failed to reject
the null hypothesis, it is inevitable that the statistical test
exhibits low power. More appropriately, a researcher
should be concerned with the question that, given the
original sample size and variance, would it be possible to
detect a behaviourally meaningful effect? If the answer
is no, then it is possible that the experiment lacked
sufficient power to detect an effect due to inadequate
sample size or large sample variability (for a more detailed
discussion see Peterman 1990; Thomas 1997).

As with any other statistical measure, the power of any
test is an estimation because it is based solely on sample
values. Moreover, power estimates are also affected by
the degree to which the data fail to meet the under-
lying assumptions on which the particular test was built
(Peterman 1990). Since the results from randomization
tests are based solely on the characteristics of the data,
it is inappropriate to use parametric procedures for
measuring statistical power because these procedures
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make assumptions about the data. To illustrate this point,
we present a simple example (one-tailed, one-sample
hypothesis test) demonstrating how standard procedures
for assessing power cannot be applied to data that do not
conform to the assumptions of the classic statistical
methods. Let us suppose an investigator is studying the
mating behaviour of a water strider species, and hypoth-
esizes that the premating struggle (i.e. between the male
and female) should be constrained to 3.0 s or less due to
increased risk of predation to both individuals during this
activity (null hypothesis). A sample of 27 struggle events
is observed in order to determine whether the mean
struggle time is greater than 3.0 s. Let us say that the
mean struggle time for this sample was 3.1 s with a
standard deviation of 0.8 s. According to the sampling
distribution of means of a normal population (i.e. t
distribution), based on this data the null hypothesis
should not be rejected (Fig. 1a). This is because the critical
value (converted from a t critical value of 1.706,
alpha=0.05) is larger than the sample mean struggle time.
Now suppose that the null hypothesis is in fact false and
that the true population struggle time is 3.1 s (Fig. 1b). In
this case, only sample means greater than 3.26 s would be
sufficient to reject the null hypothesis, thus resulting in a
statistical power equal to 0.16. In other words, there is a
16% chance that we would reject the null hypoth-
esis, when the null hypothesis is actually false. Finally,
suppose again that a sample had a mean struggle time of
3.1 s with a standard deviation of 0.8 s, however, with a
positively skewed sampling distribution (Fig. 1c). The
smaller right tail of the distribution (i.e. acceptance area)
results in a power level equal to 0.08, which is twice as
small as the case with a normal sampling distribution.
Therefore, based on the parametric procedure for esti-
mating power, we would have overestimated the power of
the test for the asymmetric population. This example
clearly illustrates why it is invalid to employ parametric
methods for assessing the power of studies that examine
data that do not meet the underlying statistical assump-
tions on which the parametric tests are based. The same
reasoning applies to estimating type I error rates (i.e.
probability of a statistical test erroneously rejecting a null
hypothesis), where parametric tests can become more or
less conservative (i.e. the true type I error of the test is
smaller or larger than the alpha established a priori)
depending on how the data depart from the underlying
assumptions.
(a)

3.0

3.1

3.1

(b)

α = 0.05

3.26

Power = 0.16
β = 0.84

(c)

Power = 0.08

β = 0.92

Figure 1. Sampling distribution for (a) testing the null hypothesis
that a sample comes from a normal population with a mean equal to
3.0, (b) an alternative (i.e. rejection of the null hypothesis) normal
population with a mean of 3.1 and (c) a fictional non-normal
population with a mean of 3.1. All populations exhibit the same
variance. This example shows how classical statistical power is
dependent on the underlying assumptions of the test. Here, power
would have been overestimated if a classic approach was applied
to the non-normal population (i.e. sampling distribution shown
in c).
APPROACHES FOR ESTIMATING STATISTICAL
POWER

Here, we feel it is important to make a distinction
between what we refer to as analytical and empirical
methods for estimating the power of a statistical test.
Analytical methods are based on the same probability
theory and assumptions that are used to identify the
appropriate statistical distribution for any traditional
statistical method. Several prefabricated tables (e.g.
Cohen 1988) and computer software packages (see
Thomas & Krebs 1997) based on numerical solutions are
available for estimating the power of most commonly
used statistical tests. However, when analytical formulae
for estimating power have not been derived (e.g. Thomas
& Juanes 1996) or when there is interest in assessing the
power of a test in which statistical assumptions have been
violated, power tables can still be generated using a
Monte Carlo approach (e.g. Stephens 1974). In this case,
one simulates statistical populations and manipulates
them in order to introduce a desirable effect size (e.g.
difference between means) or sample variability (e.g.
variance). Following this, a large number of samples are
taken and the test statistic is calculated each time (Oden
1991). If the effect size is manipulated to be zero (i.e. the
null hypothesis is true), the probability of committing a
type I error is estimated as the fraction of tests that
erroneously rejected the null hypothesis. If the effect size
is set different from zero, the proportion of cases in which
the null hypothesis was correctly rejected is used as an
estimate of statistical power. A comprehensive simulation
study, where a large number of scenarios are constructed
by manipulating several different combinations of effect
sizes, sample variation, alpha levels and sample size,
provides a basis for understanding the behaviour of any
particular test and for comparing different tests. This aids
in identifying the most appropriate statistical test for a
particular scenario (i.e. combinations of factors that can
be influential to the statistical test).
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Since randomization tests are uniquely related to the
particular data set being analysed, their statistical power
has to be estimated using empirical methods. When
conducting Monte Carlo simulations, one has to provide
a sampling scheme where the characteristics of the stat-
istical populations being generated are defined. However,
even for empirical approaches, it would be infeasible to
generate all types of distributions underlying all possible
populations found in nature, especially since the true
distribution of the population is not known. Moreover,
because of their flexibility, different randomization pro-
cedures can be used to test the same null hypothesis, but
depending on the nature of the data, the results can be
conflicting (e.g. Kennedy & Cade 1996; Manly 1997). For
these reasons, we argue that appropriate procedures for
addressing the robustness of randomization tests should
be devised specifically for the characteristics of the data
under investigation. To accomplish this we see two poss-
ible approaches. In the first approach, one must construct
plausible distributions according to the nature of the data
being studied, using known distributions with parameter
values equivalent to the ones observed in real situations
(e.g. normal, uniform, log-normal, exponential and
bimodal). Following this, a Monte Carlo experiment is
performed. If the test being studied demonstrates reason-
able performance in a large number of scenarios, one can
assume that it will exhibit a similar performance when
applied to the data set of interest. The second approach
involves constructing empirical distributions using the
data at hand or from previous studies of similar nature.
The advantage of this approach is that the analysis is
being performed using the specific type of distribution,
regardless of what that might be, eliminating the need of
generating several plausible scenarios to approximate the
distributional properties of the samples. Similarly, when
applying empirical distributions, effect sizes and other
characteristics can be manipulated and examined using a
Monte Carlo experiment.

The difference between the two approaches described
above relates in part to the distinction between a priori
and a posteriori power analysis. Since the distribution of
the population being studied is assumed to be unknown,
the most appropriate way for conducting a priori power
analysis for randomization tests is to use a large number
of different distributions, hoping that at least one will
approximate the distribution being studied. On the other
hand, in a posteriori analysis, if the null hypothesis is not
rejected, one can verify whether the sample size and the
alpha level used would be sufficient to provide enough
power for detecting a behaviourally meaningful effect
size, given the original variation in the data. Nevertheless,
much more can be achieved by conducting a posteriori
Monte Carlo experiments. By manipulating distributional
parameters (e.g. variance and difference between means),
a sensitivity analysis can be also conducted to acquire
some understanding about the behaviour of the statistical
test being applied (e.g. Taylor & Gerrodette 1993). In
addition, if the distributional parameters in the data are
changed in order to make the null hypothesis true, it can
be verified if the probability of type I error corresponds to
the alpha level established a priori. Altogether, a well-
planned Monte Carlo experiment can provide the
researcher with the confidence that the most appropriate
test is being applied, as well as aiding in the planning of
future studies.

In the following section, we use two empirical
examples to illustrate protocols for conducting Monte
Carlo experiments to evaluate the power and type I error
rates of randomization tests. As a first step, it seems to us
that it would be more clear and useful to behaviourists if
we restrict our presentation and examples to protocols
that address the robustness of randomization tests based
on a posteriori analysis. In addition, a priori analysis for
randomization procedures usually involves a great deal of
computational time and effort in terms of developing
computer routines to generate a multitude of different
scenarios and combination of factors that might be influ-
ential (e.g. Manly 1995), and therefore is beyond the
scope of this study. More generally, these protocols not
only apply to randomization tests, but also are appropri-
ate for estimating power and type I error rates for any
statistical test that do not meet parametric assumptions.
EMPIRICAL EXAMPLES AND MONTE CARLO
PROTOCOLS

Here we present in detail the steps involved in a Monte
Carlo experiment for evaluating the robustness of a
statistical test, which are based on modifications of pro-
cedures suggested by Manly (1997). Since any Monte
Carlo protocol is highly coupled with the type of the
statistical test being conducted, we decided to present
examples for an analysis of variance (ANOVA) design and
for regression and correlation analyses since they are
widely used in behavioural studies. Whatever the statisti-
cal test, the general idea is to modify the original data to
introduce certain effects. When the effect is set to zero,
type I error rates can be estimated, whereas when the
effect is set at larger than zero, the power of the test can
be assessed. Although we will provide all the details of
these Monte Carlo protocols, we feel that they might
present some computational difficulties when imple-
mented. For this reason, we developed a flexible com-
puter program that estimates the statistical power and
type I error rates based on the protocols described here.
The software is available from the authors upon request.
Example 1: Analysis of Variance

The following details a Monte Carlo experiment for
assessing the robustness of different tests applicable to an
ANOVA design. We use the data of Pitcher & Stutchbury
(2000) to address the question of whether foray rates (per
hour) differ between fertile, incubating and nestling
stages of hooded warblers, Wilsonia citrina. Foray rate was
measured as the number of times/h that an individual left
its territory and entered the core area of an adjacent
defended territory. The original sample size, mean and
variance for each stage is presented in Table 1. We
compared the efficiency of the randomized ANOVA,
parametric ANOVA and the Kruskal–Wallis test based on
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Table 1. Means and variances (in parentheses) for the original data and the simulation scenarios used for
estimating type I error (H0=true) and power (H0=false) for testing differences in foray rates (per hour) of fertile,
incubating and nestling stages of hooded warblers

Nesting stage N Original data*
Scenario A
H0=true

Scenario B
H0=false

Scenario C
H0=false

Fertile 15 0.821 (0.187) 0.892 0.821 0.821
Incubation 13 0.841 (0.430) 0.892 0.841 0.841
Nestling 14 1.013 (0.316) 0.892 1.300 1.500

Variances in all scenarios were held equal to the variance in the original data.
*Pitcher & Stutchbury (2000).
the chi-square approximation (Zar 1999). When these
tests were applied to the original data, none produced
significant results. As is standard practice in conducting
power analyses, we evaluated the robustness of these tests
by altering the sample means, whereas the variances were
held constant according to the original data. To assess
type I error rates, we modified the means to be the same
as the mean for all samples combined (scenario A: Table
1). Although counterintuitive, due to male parental care
in hooded warblers, it seems that males abandon their
territories slightly more often during the nestling stage
(but not significantly more) than do individuals in the
other stages (Table 1). To verify how large the mean
nestling foray rate should be to provide adequate power
to reject the null hypothesis, we kept the means for the
fertile and incubation stages as observed, but modified
the mean of the nestling stage to be 1.3 and 1.5 (i.e.
scenarios B and C: Table 1), as well as applying the
procedure to the original sample means and variances.
The Monte Carlo protocol is as follows.

(1) Calculate the mean Xi and the standard deviation si

for each sample.
(2) Standardize each sample (i.e. nesting stage) separ-
ately so that their means equal 0 and variances equal 1
using the equation tj=(xj�Xi)/si, where tj is the jth stand-
ardized observation and xj is the jth original observation.
(3) Randomly permute the standardized observations
with respect to one another, redistributing them by the
samples, respecting their original sample sizes.
(4) Modify the samples in order to change their means
(i.e. effect size) according to the planned scenarios (Table
1). This can be accomplished by using the standardization
process in step 2, but solving for xj using the equation
xj=X+tjs. For instance, for scenario A, the fertile stage
would be modified by xj=0.892+tj 0.187 (Table 1).
(5) Conduct the statistical test (i.e. parametric ANOVA,
randomized ANOVA and the Kruskal–Wallis test).
(6) Repeat steps (3) to (5) a large number of times (in this
study we repeated 1000 times), recording the number of
significant outcomes for each test.

In essence, by randomizing standardized obser-
vations among samples our protocol mimics the standard
protocol for conducting a priori Monte Carlo experi-
ments to assess power as described before, but using the
distributional characteristics of the data. In fact, if
samples are drawn from normal populations with equal
variances, our protocol would provide equivalent results
to the ones obtained in standard power tables. However,
it is important to note that our protocol makes two
assumptions: samples are randomly drawn and all
samples follow populations with the same form of distri-
bution (i.e. shape). The rationale and relevance of these
assumptions is related to the way observations are stand-
ardized and then randomized among samples. If samples
do not follow the same distributional type, standardized
observations cannot be interchanged without modifying
sample properties and hence the analytical outcomes.
Since both parametric ANOVA and nonparametric
Kruskal–Wallis tests have the same assumptions made
here, these assumptions are reasonable for comparing
the robustness of these approaches to a randomization
test. The randomization test is conducted as follows.

(1) Calculate the original F ratio for the standardized
data set (Fobs).
(2) Randomly permute the observations with respect
to one another, recalculating the F ratio for the random-
ized data set (Frnd).
(3) Repeat the randomization a large number of times
(in this study we used 9999), where the probability
of rejecting the null hypothesis is calculated as: (number
of Frnd equal to or larger than Fobs+1)/(number of rand-
omizations+1). The addition of 1 in the numerator and
the denominator represents the observed F ratio for the
original data, which is considered as a possible value of
the randomized distribution.

For scenario A (Table 1: i.e. no difference among
means), we estimated type I error rates as the number of
times that a statistical test erroneously reported a signifi-
cant outcome, and for scenarios B, C and the original
data, we estimated statistical power as the number of
times that a test correctly rejected the null hypothesis.
We calculated both for a variety of alpha levels (i.e. 0.2,
0.1, 0.05, 0.01, 0.005 and 0.001).

Table 2 contains the comparisons of the three statistical
approaches for each scenario. The randomization test
produced the best type I error rates, with the parametric
ANOVA rejecting the null hypothesis less frequently and
the Kruskal–Wallis test rejecting it more frequently than
expected by the pre-established alpha level. In addition,
the Kruskal–Wallis test presented the highest power,
followed by the randomization test and then the para-
metric ANOVA. Considering a power level of 0.8 as
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adequate (Cohen 1988), the Kruskal–Wallis and the ran-
domization test would be satisfactory to detect a signifi-
cant foray rate of 1.5 times/h at alpha levels of 0.05 and
0.01, but not for a foray rate of 1.3 times/h. Since forays
are believed to be related to extrapair copulation effort in
the hooded warbler, rather than searching for food
(Pitcher & Stutchbury 2000), it would be beneficial to
acquire a larger sample size to verify if in fact the nestling
stage has a larger foray rate. This would be particularly
desirable since this observation contradicts theoretical
expectations that during the nestling stage males should
spend less time out of their territory (Westneat et al.
1990). Considering these results, it appears that a ran-
domization test might be a better approach since it
exhibits adequate power to the Kruskal–Wallis test (for a
rate of 1.5 forays/h), but produces more consistent type I
error rates.
Table 2. Results from the Monte Carlo simulation study evaluating type I error rates (scenario A) and power (scenarios B and C) when testing
differences between nesting stages of hooded warblers

Alpha

Original data*
Scenario A
(H0=true)

Scenario B
(nestling mean=1.3)

Scenario C
(nestling mean=1.5)

RN F KW RN F KW RN F KW RN F KW

0.20 0.343 0.308 0.390 0.211 0.182 0.254 0.868 0.848 0.936 0.991 0.990 0.997
0.10 0.192 0.157 0.219 0.115 0.070 0.131 0.746 0.660 0.848 0.977 0.959 0.992
0.05 0.121 0.077 0.139 0.054 0.039 0.070 0.584 0.490 0.720 0.934 0.893 0.977
0.01 0.034 0.011 0.034 0.013 0.002 0.015 0.341 0.177 0.379 0.801 0.557 0.845
0.005 0.018 0.004 0.020 0.007 0.000 0.006 0.247 0.086 0.264 0.671 0.410 0.737
0.001 0.006 0.000 0.003 0.000 0.000 0.000 0.104 0.013 0.097 0.451 0.142 0.571

RN: Randomization ANOVA; F: parametric ANOVA; KW: Kruskal–Wallis test.
*Pitcher & Stutchbury (2000).
Example 2: Regression and Correlation Analysis

Our second empirical example is from Gibbons (1987),
who examined the role of juveniles in parental reproduc-
tive success of the common moorhen, Gallinula chloropus.
To test whether a relationship existed, Gibbons calculated
the correlation between the number of juveniles to feed
the second brood (X) and the number of second-brood
chicks reared to independence (Y). Although this study
was interested in examining the strength of this corre-
lation, we use his data to address the robustness of the
parametric t test and a randomization test to assess the
statistical significance of the slope of the regression line.
Also, it is important to note that since the correlation
coefficient is a standardized form of the simple regression
slope, our simulation protocol and results are also rel-
evant for the Pearson product moment correlation
coefficient. Furthermore, we found that the data con-
tained a high level of heteroscedasticity, supporting the
notion that a nonparametric test might be more appro-
priate. We propose the following Monte Carlo protocol to
determine the most appropriate statistical method to be
employed.
(1) Using the original data, construct the regression
model and calculate the residuals e (i.e. actual minus
predicted number of second-brood chicks reared to
independence).
(2) Randomize the residuals e in relation to X and add
them to X to create a ‘new’ set of Y values based on the
equation Yi=bXi+ei. The slope (b) of the regression line is
set as zero to assess type I error rates, and is set to a
nonzero value to assess power.
(3) Construct the regression model for the randomized
data set and conduct the t test and the randomization test
to determine whether the slope of the regression line is
significantly different from zero.
(4) Repeat steps (2) and (3) a large number of times (in
this study we repeated 1000 times), recording the number
of significant outcomes for each test.

Note that at each iteration, the residuals are being
reallocated to different X values, and Y values are recal-
culated each time. The only assumption made is that
regardless of the distribution of the residuals, they are
independent and therefore interchangeable among the X
values. Since independence of residuals is also a para-
metric assumption, it seems a very appropriate way of
assessing the robustness of a parametric compared to a
nonparametric approach. If in fact residuals are indepen-
dent, normally distributed and homoscedastic, para-
metric tests are not adversely affected. For each generated
data set, the randomization test is conducted as follows.

(1) Calculate the slope (bobs) of the regression line based
on the original data.
(2) Randomly permute the new values of Y with respect
to X, recalculating the slope for the randomized dataset
(brnd).
(3) Repeat the randomization a large number of times (in
this study we used 9999), where the probability of reject-
ing the null hypothesis is calculated as: (number of brnd

equal to or larger than bobs+1)/(number of randomiz-
ations+1). The addition of 1 in the numerator and
the denominator represents the observed slope for the
original data, which is considered as a possible value of
the randomized distribution.

We estimated type I error rates as the number of times
that a statistical test reported a significant outcome, and
we estimated statistical power as the number of times that
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a test correctly rejected the null hypothesis for a slope of
0.64 and the original slope of 1.28. We calculated both for
a variety of alpha levels (i.e. 0.001, 0.005, 0.01, 0.05, 0.1
and 0.2). Table 3 contains the estimates of type I error
rates and statistical power. The randomization procedure
and the parametric t test have similar type I error rates,
being both relatively close to the values expected by
the alpha levels. Although both tests presented lower
performance in terms of power, the randomization
procedure performed slightly better.

Although not directly related to the present study, we
would also like to point out that randomization tests
based on different test statistics can provide different
levels of power. For instance, Adams & Anthony (1996)
used the sum of squares between treatments as the test
statistic in their randomization test, whereas others have
used the F ratio (e.g. this study), mean of squares between
treatments and residuals values (see Manly 1997).
Another example includes regression analysis where the
original residuals are often used in generating random
slopes, rather than the original dependent variable
(Manly 1997). Finally, the number of permutations are
also important, where Manly (1997) suggests at least 1000
for testing a hypothesis using an alpha=0.05 and 5000
permutations when an alpha=0.01 is used. These consid-
erations are important when designing Monte Carlo
simulations for assessing the power of randomization
tests, and must not be overlooked.
Table 3. Results from Monte Carlo simulation study evaluating type
I error rates (b=0) and power (b=0.64 and 1.28) for a randomization
test (RN) and the parametric t test when testing the statistical
significance of the regression slope relating the number of second-
brood chicks reared to independence to the number of juveniles to
feed the second brood in common moorhens*

Alpha

b=0 b=0.64 b=1.28

RN t test RN t test RN t test

0.200 0.187 0.184 0.742 0.556 0.992 0.971
0.100 0.095 0.094 0.552 0.391 0.972 0.912
0.050 0.046 0.056 0.389 0.285 0.912 0.827
0.010 0.015 0.015 0.155 0.103 0.654 0.53
0.005 0.005 0.009 0.101 0.064 0.512 0.397
0.001 0.001 0.004 0.026 0.016 0.228 0.172

*Original data from Gibbons (1987).
CONCLUSIONS

In the present study we have shown that analytical
methods for assessing the robustness of statistical tests are
not appropriate when assumptions on which the particu-
lar test was built are violated. We have described proto-
cols for an ANOVA design and a regression/correlation
analysis that detail the mechanics involved in conducting
Monte Carlo experiments to estimate type I error rates
and statistical power using parametric, classic non-
parametric and randomization approaches. The selection
of empirical examples illustrated in this study was
deliberate to provide the researcher with a broad demon-
stration of the application of Monte Carlo protocols
presented here. Specifically, the first example examined
foray rates in different nestling stages of hooded warblers
and was chosen to represent a case where the null
hypothesis was not rejected. Consequently, we described
a posteriori power analysis to evaluate which test would
be more appropriate given the characteristics of the data.
Initially, the Kruskal–Wallis seemed to be the best option,
but in order to detect a behaviourally meaningful effect,
the randomization ANOVA proved to be more appropri-
ate because it not only provides adequate statistical
power, but it also exhibits smaller rates of type I error
compared with the Kruskal–Wallis test. The second
example, which examined the role of parental reproduc-
tive success in common moorhens, was chosen to illus-
trate that power is not the only important component
when evaluating the appropriateness of a particular stat-
istical test. As already emphasized, it is important to
check whether the type I error probability corresponds to
the pre-established alpha level since the power of a test
can be adequate, but at the expense of a high probability
of committing a type I error. In this case, it was shown
that the randomization test and the t test have similar
type I error rates, but the randomization test is more
powerful.

In conclusion, we believe that researchers should not
have any reason to anticipate which statistical test is the
most appropriate and powerful for their data. Since para-
metric and classic nonparametric tests are affected by the
degree to which the data do not meet the assumptions
(Motulsky 1995; Zar 1999), and randomization tests, by
the degree of variation in the data (Manly 1995), it is
always desirable to compare different tests to evaluate
their relative costs in terms of type I and type II errors
(Peterman 1990). Here, we have provided a framework to
conduct such comparisons, thus enabling bahaviourists
to select the most robust statistical methods for analysing
their data. When comparing different tests we stress that
type I error rates and statistical power should be com-
puted prior to conducting and interpreting test results so
that the investigator is not influenced by any preconcep-
tion of how the methods will perform according to any
particular expectation. This issue is equivalent to estab-
lishing alpha levels prior to conducting statistical tests
and it should be taken seriously. The statistical method
showing the best combinations of type I error rates and
power should be conducted and the results reported and
interpreted accordingly. Furthermore, in cases where the
investigator has already chosen a specific statistical test
to analyse the data, our protocols can be used to assess
the robustness and reliability of the results. Together,
although randomization tests appear to be a powerful
alternative to parametric and classic nonparametric
statistics, this is not a general rule and their appropriate-
ness should be judged and compared to alternatives.
Given that a great deal of effort is spent in collecting data,
researchers should dedicate more effort to comparing
different statistical methods and choosing the method
that is best suited to the particular characteristic of the
data at hand.
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