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Fisheries data often contain inaccuracies due to various errors. If such errors meet the Gauss—Markov
conditions and the normality assumption, strong theoretical justification can be made for traditional least-
squares (LS) estimates. However, these assumptions are not always met. Rather, it is more common that errors
do not follow the Gauss—Markov and normality assumptions. Qutliers may arise due to heterogenous
variabilities. This results in a biased regression analysis. The sensitivity of the LS regression analysis to
atypical values in the dependent and/or independent variables makes it difficult to identify outliers in a resid-
ual analysis. A robust regressicn method, least median squares (LMS), is insensitive to atypical values in
the dependent and/or independent variables in a regression analysis. Thus, outliers that have significantly
different variances from the rest of the data can be identified in a residual analysis. Using simulated and
field data, we explore the application of LMS in the analysis of fisheries data. A two-step procedure is sug-
gested in analyzing fisheries data.

Les données sur les péches recelent souvent des inexactitudes attribuables a différentes erreurs. Lorsque ces
erreurs sont conformes aux conditions associées au théoréme Gauss—Markov et a I'application de la nor-
malité, on peut évoquer d'excelientes justifications théoriques pour le recours aux estimations par la
méthode classique des moindres carrés (MC). Mais ce n'est pas toujours le cas. En fait, c'est plus sou-
vent le contraire. Il peut y avoir des valeurs extrémes aberrantes, attribuables a des variabilités hétérogenes.
Celies-ci donnent lieu 2 des analyses de régression biaisées. La sensibilité de I'analyse (par régression
des moindres carrés) aux valeurs atypigues prises par ies variables dépendantes ou encore indépendantes,
complique la tache d'identifier les observations extrémes aberrantes dans une analyse des résidus. Une
méthode de régression robuste, la méthode par les moindres carrés médians (MCM), est insensible a ces
valeurs atypiques. Ainsi peut-on identifier les valeurs extrémes aberrantes auxquelles sont associées des vari-
ances significativement différentes de celles du reste des données, dans le cadre d'une analyse des résidus.
En appliquant des données simuiées et obtenues sur le terrain, nous explorons 'application de la méthode
des MCM a ['analyse des données des péches. Nous proposons une procédure 3 deux étapes pour analyser
les données de ces dernieres.
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Problems with the Least Squares Method

Investigation of relationships between variables related
to fish and the environment that fish inhabit often is one
of the most important objectives for fisheries studies. Such
an investigation is usually quantified by a linear regression
equation written as

() Y, =By+B X, +...+BgXg,te,,i=1,.. N

where Y, the dependent variable, is some measure associ-
ated with fish, X’s, the independent variables, are usually
environmental variables, K is the number of independent
variables, N is the sample size, € is the error term, and B’s
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are the parameters to be estimated. Because of tradition and
ease of computation, the least-squares (LS) method has been
adopted generally to estimate B’s. To derive the unbiased
LS estimates of B’s and theoretically justified variance esti-
mates, the Gauss—Markov conditions must be met, i.e., € is
independent and identically distributed with a constant vari-
ance. It is assumed also that the independent variable(s) is
(are) free of error. The assumption of normality is required
for hypothesis tests or the construction of confidence inter-
vals on the estimated parameters.

Fisheries and environmental data are typically contaminated
by nonnormal errors with heterogenous variances. These
errors may result from various sources: errors in measurement
and recording, variation from unusual events or abnormal
environmental conditions, or samples containing measure-
ments coming from different populations. These error sources
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can affect not only the dependent variable but also the inde-
pendent variables, thereby creating outliers (or influential
data points) defined as observations that are aberrant or
unusually different from the rest of the observations
(Rousseeuw and Leroy 1987). The existence of outliers
causes many fisheries data to fail meeting the Gauss-Markov
conditions and normality assumption. In some cases, this
problem can be remedied by an appropriate transformation
of the data (e.g., log-transformation, Kimura 1989; Jolicoeur
1991), by using generalized least-squares methods such as
weighted least squares (Sen and Srivastava 1990) and itera-
tive reweighted least squares (e.g., biweight, Holland and
Welsch 1977), or by fitting the data to more complex models
such as a nonlinear model. However, it is predictable that
those approaches may not always function in improving the
quality of data in regression analysis with respect to the
normal error and constant variances. A linear regression
model may be required when studying the fish environment
data for various reasons, e.g., studying biological theories and
developed models. Moreover, if some data points do have
atypical values relative to the majority of data in a regression
analysis, perhaps they should not be included in the regres-
sion analysis. In the case of simple regression analysis, it
is easy to identify outliers by examining the bivariate plot.
However, such a visual inspection may be quite subjective,
and it is impossible to do so if there are more than two
independent variables. Regression diagnostics technigques
have been applied to identify the outliers in the multipie
LS regression analysis. However, it is difficult to do such an
analysis if there are multiple outliers in a data set with a
large number of observations. As well, it may be difficult to
identify these outliers from a residual plot, since they do
not always show up in such a plot (outliers usually pull the
regression line towards themselves, Sen and Srivastava
1990). In practice, outliers in fisheries data often go unno-
ticed because much fisheries data are processed by com-
puters without careful a priori inspection and screening.
This is particularly true with data sets having a large num-
ber of observations. The result from a regression analysis
of such data may be incorrect due to the existence of outliers.

Robust Regression Analysis

Robust regression (RR) techniques have been developed
that are less sensitive to outliers in the data compared with
the LS. Because RR estimation is not sensitive to outliers in
the data, the outliers are usually far away from the fitted
regression line, and their large residuals can be detected
easily in a residual analysis. The following RR techniques
have been well developed for the regression analysis: (1) least
absolute value (LAV, Edgeworth 1887), (2) M estimates (Huber
1973), (3) least median of squares (LMS, Rousseeuw 1984),
(4) S estimator (Rousseeuw and Yohai 1984), and (5) least
trimmed squares (LTS, Rousseeuw 1984). These methods
are all robust with respect to outliers in the dependent vari-
able. However, the first two methods are not robust with
outlying independent variables (Rousseeuw and Leroy 1987).

A parameter, the breakdown point, is used often to describe
the ability of an estimation method in identifying the unbi-
ased estimates for data having outliers. It is defined as the
smallest fraction of contamination that can cause the estimator
to take on biased values far away from the true estimates
(Rousseeuw and Leroy 1987). It is obvious that the largest
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value that can be expected for the breakdown point is 50%.
For a larger amount of contamination, it is impossible to
distinguish the “good” and the “bad” parts of the data.

The following estimation methods are used in our study:
LS, Ricker’s geometric mean (GM), LAV, LMS, and the
LMS-based reweighted least squares (RLS). The GM method
(or reduced major axis) is well known in fisheries studies
(Ricker 1975). It is recommended that it be used when the
independent variable is subject to errors (McArdle 1988).
Instead of minimizing the residual sum of squares like LS,
the methods of LAV and LMS are

minimize N

s Yle,l

B i=1
and
N
minimize med e?,
'g i=t

respectively, where €; are the residuals calculated as the dif-
ference between the observed Y and estimated Y from the
fitted regression line.

The estimation algorithm for LAV has been well docu-
mented in many regression books, but the estimation algo-
rithim for LMS is relatively unknown. Unlike the traditional
regression methods, it is perhaps impossible to write down
a straightforward formula for the LMS estimator. The algo-
rithm used by Rousseeuw and Leroy (1987) for the LMS
analysis is similar to the bootstrap (Efron 1979), except for
the following aspects: (1) sampling size equals the number
of parameters (K + 1, K is number of the independent vari-
ables in a regression model as defined in equation (1)) in
the regression model instead of equalling total sample size
(N) as with the bootstrap and (2) sampling in LMS is not
random; rather, includes all possible combinations of sub-
sample of size (K + 1) from N data points. For equation
(1), the LMS estimation algarithm can be described as fol-
lows: (a) repeatedly draw subsamples of “K + 17 different
observations, (b) determine the regression surface (B,)
through the “K + 1” points for subsample J, (c) calculate
M = med(¥Y — XB ,)2 with respect to the whole data set, and
(d) find the B, which has the smallest M value for all possible
subsamples of size K + 1, and it is the LMS-estimated 8.

Rousseeuw and Leroy (1987) proposed procedures to iden-
tify outliers based on the analysis of residuals for LMS.
They proposed (a) calculate S; = 1.4826(1+5/(N-K-
1))\/ [min(med e%(B))}, (b) compute the residuals, R;, based on
the LMS-estimated regression equation, and (c) determine
a weight w; for the ith observation; if IR/S,l > 2.5, data point
i is an outlier (for more detailed information, refer to
Rousseeuw and Leroy (1987)). They also suggested using a
reweighted least-squares regression to estimate the variation
for the parameters which is comparable with the variation
estimated in an LS analysis. The RLS is an LS estimator
with a weight of O for outliers and 1 for normal data points
(i.e., outliers are excluded from the RLS analysis). The esti-
mation algorithm for LMS was detailed by Rousseeuw and
Leroy (1987) and for LAV by Bloomfield and Steiger (1983).

Simulation Study

Various simulation studies have been done using LMS
and LAV (Rousseeuw and Leroy 1987). However, most of
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Fic. 2. Estimation of the parameters when there are outliers in X: (a) intercept; (b) slope.

these studies did not examine the effect of outliers on the esti-
mation of each parameter in cases containing different error
structures. In our study, a simple linear model was used for
the simulation. The X’s were randomly generated from a
uniform distribution of numbers between O and 10. The
“true” Y’s were calculated from the X’s using the simple
linear model with both intercept (,) and slope (b,) being
1. The “observed” Y’s and/or X’s were derived by adding
the following error structures to the “true” Y’s and/or X’s.
Four scenarios were considered in this study: (1) normal
situation: € in equation (1) having distribution of N(0,1);
(2) outliers in the dependent variable: a certain percentage
of the data in Y is contaminated by an error term N(20,2), but
the rest of the data are the same as those in the normal
situation; (3) outliers in the independent variable: a certain
percentage of the data in X is contaminated by an error term
N(40,2), but the rest of the data are the same as those in
the normal situation (the same observations were affected
as in (2)), and (4) outliers in both ¥ and X: a certain per-
centage of the data is contaminated by the error terms in
(2) and (3), respectively, but the rest of the data are the
same as those in the normal situation. ‘

The first scenario is usually assumed in the traditional
LS regression analysis: errors in the Y variable are likely
due to measurement errors or random environmental varia-
tion. The second and fourth scenarios can be observed in
practice due to abnormal measurement errors for a small
proportion of data points which may result from the fail-
ure or inappropriate use of measurement instruments, inex-
perienced workers (e.g., a new technician), errors in record-
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ing, or errors in entering data into computers. These two
scenarios may also arise due to some unusual events such as
abnormal environmental variables (e.g., very high or low
temperature) or to unkowingly included individuals from a
different population. The third scenario may be due to a
limited ability to measure the variable accurately or errors in
recording and typing data.

A sample size of 20 was simulated for each data set. The
percentage of the data that was contaminated by an error
term was chosen to increase from 0 to 50% by increments of
5%. One hundred simulations were performed for each of
the four situations at each chosen percentage level of the
contaminated data. The mean estimated values of b, and b,
were plotted separately against the percentage of the data
that had been contaminated by outliers. Because the true
values of b, and b, are known, such plots show the differ-
ences in estimating the true values of the parameters among
estimation methods.

Application of Rebust Regression Methods to
Field Fisheries Data

We applied the RR methods in the analysis of the fol-
lowing sets of fisheries data: (1) number of fish species and
lake surface area (Barbour and Brown 1974), (2) fish sus-
tained yields (SY) and lake thermal variables (Christie and
Regier 1988), (3) fish SY and lake morphometric variables
(THV = thermal habitat volume, THA = thermal habitat
area; Christie and Regier 1988), (4) multiple regression
analysis of fish SY versus THV or THA and total dissolved
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F1G. 3. Estimation of the parameters when there are outliers in both X and Y: (a) intercept; (b) slope.

solids (TDS; Christie and Regier 1988), and (5) fish size
at age and lake pH (Ryan and Harvey 1980).

These data sets were all fitted to the linear regression
equation by the original authors using the LS method. In
our study, they were fitted to the same model using the
LMS and RLS methods. The defined outliers in the LMS
analysis were examined further as a means of explaining
why they differed significantly from the rest of the data. If
there were five or more outliers, a linear function was fitted
to them using LMS and RLS (the minimum sample size for
LMS analysis was five, as defined by Rousseeuw and Leroy
(1987)). If the resultant RLS line was significant, differ-
ences in slope between the estimated line for the outliers
versus the line for the remainder of the data were tested. If
the differences were not significant at p = 0.05, the differ-
ences in intercept between two lines were examined.

Results

Simulation Study

Simulation results are summarized in Fig. 1 when there
were outliers in Y. The LAV, LMS, and RLS appear to have
smaller estimation biases than the LS and GM methods. The
results are shown in Fig. 2 when only X contained outliers.
It appears that the LMS and RLS methods yielded smaller
estimation biases than the other three methods. When both
X and Y had outliers, the LMS and RLS methods again
yielded smaller estimation biases than the other three methods
(Fig. 3).

Analysis of Field Fisheries Data

(1) Number of fish species and lake surface area
The LS-estimated linear regression equation was

In(number of fish species) = 2.34(0.199)
+ 0.143(0.0266)In(lake area), r = 0.55, N =70

where the number in parentheses is the estimated standard
error for the parameter, r is the correlation coefficient, and
N is the sample size used in the estimation. The LMS-
estimated equation was

In(number of fish species) =
2.649 + 0.019In(lake area), r = 0.45, N = 70.

The following 12 lakes were defined as outliers: Chad
(3, numbers show lake position on Fig. 4), Malawi (7),
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Mweru (8), Tanganyika (13), Victoria (14), Zirahuen (31),
Balkhash (37), Black Sea (39), Erie (54), Huron (55),
Michigan (58), and Ontario (59) (Fig. 4). The RLS-
estimated regression equation was

In(number of fish species) = 2.67(0.152)
+ 0.068(0.0222)in(lake area), r = 0.38, N = 58.

An LMS regression was used to fit a simple linear equa-
tion to 12 outliers. Four of 12 lakes were defined as out-
liers again: Malawi (7), Tanganyika (13), Zirahuen (31),
and Balkhash (37). The resultant RLS equation was esti-
mated as

In(number of fish species) = 3.32(0.177)
+ 0.136(0.0403)In(lake area), r = 0.78, N = 8.

There was a significant difference in slopes between the
two RLS-estimated equations (p = 0.04).

(2) Fish sustained yields and lake thermal variables

For lake trout (Salvelinus namaycush), Lake of the Woods
(12) and Lake Erie (17) were identified as outliers in the
LMS analysis of SY with THA and with THV. Both lakes
had smaller log,,(SY) of lake trout than predicted for their
values of log,((THV) and log,,(THA) (hereafter, log,, is
denoted as log). The RLS-estimated slope was smaller and
the intercept was greater than those of LS regression analy-
sis (Fig. 5a and 5b). '
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Fic. 5. Plots of In-transformed total SY (kg-yrfl, In = log,) versus In-transformed THV (hm>10 d™!) and THA (ha-10 d™") for four
fish species (data from Christie and Regier 1988): (a and b) lake trout; (¢ and d) lake whitefish; (e and f) walleye; (g and h) northern

pike.

For lake whitefish (Coregonus clupeaformis), the fol-
lowing lakes were defined as outliers in the LMS analysis of
log(SY) versus log(THV): Great Slave Lake (1), Big Peter
Pond (5), Little Peter Pond (6), Georgian Bay (15), and
North Channel (16) (Fig. 5¢). The second RR analysis for
these five lakes provided an RLS equation of log(SY) =
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5.21 + 0.45log(THV), r = 0.68, N = 4, with Georgian Bay
(15) remaining an outlier. There was no significant difference
in the slope (p = 0.10), but the intercept of the above equa-
tion was significantly larger than that of the first RLS-
estimated equation (p < 0.001). Georgian Bay had a sig-
nificantly smaller log(SY) for its log(THV) compared with
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TABLE 1. Coeff1c1ent of determination for the regressions of species SY (log,,-transformed
values, kg-yr~") on several independent variables (log,,-transformed values). NS indicates that
the slope of the regression is not significantly different from 0 (p > 0.05). Numbers in parentheses
are the sample sizes used in the regression analysis.

Independent variable

Estimation THA THV Area Volume
Species method (ha-10d™YH  (m*10d7™YH (ha) (hm®)
Lake trout LS 0.81 (15)  0.86 (15) 0.59 (15) 0.71 (15)
RLS 0.95 (13)  0.88 (13) 0.90 (12) 0.83 (12)
Lake whitefish LS 0.66 (19)  0.69 (19) 0.75 (19) 0.76 (19)
RLS 0.75(17)  0.89 (14) 0.75 (19) 0.76 (19)
Walleye LS 0.72 (19)  0.47 (19) 0.15 (19) NS 0.07 (19) NS
RLS 0.95 (15)  0.47 (19) 0.10 (18) NS  0.05 (18) NS
Northern pike LS 038 (15)  0.17 (15) NS 0.03 (15) NS  0.01 (15) NS
RLS 0.54 (14)  0.62 (12) 0.03 (15) NS 0.01 (15) NS

other lakes (Fig. 5c). Two outliers were identified in the
LMS analysis of log(SY) versus log(THA): Lac lle-a-la-
Crosse (10) and Georgian Bay (15). Both lakes had smaller
log(SY) for their log(THA) than other lakes (Fig. 5d).

For walleye (Stizostedion vitreum), no outliers were iden-
tified in the LMS analysis of log(SY) versus log(THV)
(Fig. 5e). However, the following four lakes were identi-
fied as outliers in the LMS analysis of log(SY) versus
log(THA): Great Slave Lake (1), Big Peter Pond (5), Lake
Ontario (18), and Lake Nipigon (20). The RLS-estimated
intercept and slope in the log(SY)-log(THA) regression
were greater and smaller, respectively, than those from the
LS (Fig. 5f).

For northern pike (Esox lucius), Lake Superior (13), Lake
Huron (14), and Lake Michigan (19) were identified as out-
liers in the LMS analysis of 1og(SY) versus log(THV)
(Fig. 5g). These three lakes had significantly smaller log(SY)
for their log(THV) than other lakes. The RLS-estimated
slope was twice as large as that of LS, but the RLS intercept
was almost the same as that of LS (Fig. 5g). In the LMS
analysis of log(SY) versus log(THA), Lake Huron (14) was
defined as an outlier and had a smaller log(SY) for its
fog(THA) compared with other lakes. The RLS-estimated
intercept and slope were smaller and larger, respectively,
than those from the LS (Fig 5h).

For all four flSh species, the RLS-estimated coefﬁcwnt
of determination (r*) was greater than the LS-estimated r* for
those regression analyses in which there were outliers iden-
tified in the LMS analysis (Table 1).

(3) Fish sustained yields and lake morphometric variables

For lake trout, Amisk Lake (2), Lake of the Woods (12),
and Lake Erie (17) were defined as outliers in the LMS
analyses of 10g(SY) versus log(AREA) and log(SY) versus
log(VOL). All three lakes had significantly smaller log(SY)
for their values of log(AREA) and log(VOL) than other
lakes in the LMS analysis (Fig. 6a and 6b). There were no
outliers identified in the LMS analysis of log(SY) versus
log(AREA) and log(VOL) for lake whitefish (Fig. 6¢ and
6d). For walleye, Lake Erie (17) was defined as an outlier in
the LMS analysis of log(SY) and either log(AREA) or
log(VOL) (Fig. 6e and 6f). There were no outliers identi-
fied for northern pike (Fig. 6g and 6h). For both lake trout
and walleye, the differences in the slope and intercept
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between LS and RLS were the same as those in the analysis
of SY versus THV and THA (Fig. 5a, 5b, 6a, and 6b for
lake trout; Flg Se, 5f, 6e, and 6f for walleye) The RLS-
estimated r was larger than the LS r? for lake trout
(Table 1). For walleye, the RLS r? was smaller than the
LS 7%, but neither of the RLS- and LS-estimated equations
was significant (Table 1).

(4) Multiple regression analysis of fish SY versus THV
or THA and TDS

Variables selected as the regressors in this study were the
same as those in Christie and Regier (1988). For all four
fish species, there was at least one lake defined as an outlier
(Table 2). The RLS-estimated parameters differed from those
of LS. For lake trout, the LS-estimated parameter associ-
ated with log(TDS) was significantly different from 0, but the
RLS-estimated value did not differ significantly from 0. For
northern pike, the LS-estimated parameter associated with
log(TDS) did not differ significantly from 0, but the RLS
estimate differed SI%mflcantly from 0. The RLS r* was
greater than the LS r* for all four fish species.

(5) Fish size at age and lake pH

The size of yellow perch (Perca flavescens) at age 1 was
regressed against lake pH values for 25 lakes from the La
Cloche Mountain region of Ontario (Ryan and Harvey 1980).
Two lakes with the lowest pH values were identified as out-
liers. The LS-estimated r* was larger than that of RLS by
40% (Fig. 7). All the estimated parameters were signifi-
cantly different from 0. The negative slopes of LS and RLS
show that the size of yellow perch at age 1 was greater in
more acid lakes.

Discussion

The regression parameters are biased when X is subject to
measurement error. The bias is often negligible if this error
is small relative to the errors in the Y variable. If the error
rate of the X variable is more than a third of that on the
Y variable, intercept and slope are over- and underestimated,
respectively, and the GM method is suggested to replace
LS to reduce the bias (McArdle 1988). However, the valid-
ity of the GM method has been questioned recently (Jolicoeur
1990; Kimura 1992). In the simulation study, no normal
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FiG. 6. Plots of In-transformed total SY (kg-yr !, In = log,) versus In-transformed lake area (AREA, ha) and volume (VOL, hm®) (data
from Christie and Regier 1988): (a and b) lake trout; (c and d) lake whitefish; (e and f) walleye; (g and h) northern pike.

error was assumed for the X variable; instead, a proportion
of the X data were exposed <o a large error distributed as
N(40,2). The GM estimates were closer to the true values
than LS estimates when X contained outliers (Fig. 2 and 3),
implying that GM was less sensitive to atypical errors in X
than LS. However, the GM estimates still differed consid-
erably from the true values. Our simulations show that atyp-
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ical values in X and/or Y resulted in large biases in LS and
GM estimation, indicating that the breakdown point is 0% for
LS and GM. This means that inaccurate estimates of slope
and intercept occur when any outliers are present. For robust
estimation methods, LAV estimated the true values of param-
eters when only Y contained outliers and the number of out-
liers represented less than 35% of the data. However, LAV
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TABLE 2 Multipie LS, LMS, and RLS regression analyses for species total SY
(kg-yr 1y with the thermal habitat measures and the concentration of TDS (mg-L™ h,
The underlined parameter estimates are not significantly different from 0.

Lake trout

LS: 1og(SY) = 4.05 + 0.87log(THV) — 0.6%10g(TDS),
LMS: log(SY) = 3.24 + 0.80log(THV) — 0.42log(TDS),
RLS: fog(SY) = 3.27 + 0.77log(THV) — 0.4210g(TDS),

Qutliers: Lake of the Woods (7) and Lake Erie (12)

Lake whitefish

LS: log(SY) = 3.22 + 0.40log(THV) — 0.74log(TDS),
LMS: log(SY) = 3.29 + 0.48log(THV) — 0.57log(TDS),
RLS: log(SY) = 3.18 + 0.45l0g(THV) — 0.68log(TDS),

Qutlier: Little Peter Pond (6)
Walleye

LS: log(SY) = 3.15 + 0.88log(THA) — 0.08log(TDS),
LMS: log(SY) = 3.03 + 1.21log(THA) — 0.36log(TDS),
RLS: log(SY) = 2.84 + 1.09log(THA) — 0.18log(TDS),

=19, r2-0'84
N=16. r> =092

Outliers: Big Peter Pond (5), Lake Ontario (18), and Lake Nipigon (20)

Northern pike

LS: log(SY) = 1_ + 0.431og(THA) + L1.30log(TDS), N=15,r%=0.49
LMS: log(SY) = 1.86 + 0.74log(THA) + 0.73log(TDS), N =15, r2 = (.38
RLS: log(SY) = 1.28 + 0.51log{THA) + 1.25log(TDS), N =14, rt=0.65
Qutlier: Lake Huron (14)
was sensitive to outliers in X, and a few outliers in X resulted 5 L5: ILongth at Age ©) ~ 505 - 0.1a(Lae pH)
in great departures of the LAV estimates from the true values
(Fig. 2 and 3). This implies that the breakdown point for Lake Pation
o LMS: In(Length at Age 1) = 4.37 - 0.02(Lake pM)

LAV is similar to LS and GM. Differing from these three
methods, LMS and RLS were not sensitive to outliers in X
and/or Y. The estimates derived from these two methods
were almost the same as the true values when the number of
outliers represented less than 35% of the data, implying that
the breakdown point is 35% for LMS and RLS with respect
to the simulation data. These results are similar to those of
Rousseeuw and Leroy (1987) who reported a breakdown
point of 50%. However, the breakdown point of 35% defined
in our study suggests that 50% is an overestimate for the
defined simulation data. Because of the robustness of LMS
and RLS with respect to outliers in X and/or Y, we suggest
that researchers consider them when analyzing fisheries
data.

Twelve lakes were defined as outliers in the first LMS
analysis of fish species richness and lake area. Among these
lakes, five were from Africa, five from North America, and
two from the former USSR. All these lakes, except Zirahuen
(31, Mexico) and Balkhash (37, Kazakhastan), were defined
as outliers due to their exceptionally large number of fish
species for their sizes (Fig. 4). The second LMS analysis
indicated that four of these 12 lakes were outliers. Among
these four outliers, Lakes Malawi (7) and Tanganyika (13) of
Africa have exceptionally large numbers of fish species for
their size. The exceptional age of these lakes relative to
glaciated lakes of the Northern Hemisphere has also con-
tributed to the large numbers of species present. However,
Lake Zirahuen (31) and Balkhash (37) have exceptionally
low numbers of fish species for their size. This may be due
to their unique morphometry and geographic location: Zirahuen
Lake (31) is located at a fairly high elevation on the fau-
nistically depauperate Mesa Central of Mexico, and Lake
Balkhash (37) lies in an interior basin of Asia and is partly
saline and extremely shallow (Barbour and Brown 1974).
The second RLS equation was estimated based on eight
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Lake Ararat

RLS: infLength at Ags 1} = 4.78 - 0.09{Lake pH)

In(Length at Age 1) (mm)

Lake pH

Fic. 7. Plot of In-transformed length at age 1 of yellow perch
against lake pH values (data from Ryan and Harvey 1980).

lakes, four from North America, three from Africa, and one
from the former USSR. These lakes are among the largest
lakes in each of the regions in this study (Barbour and
Brown 1974). The regression slope derived from these lakes
is twice as large as that derived from the rest of the lakes
(Fig. 4), implying that these large lakes have increasingly
greater numbers of fish species for their sizes relative to
smaller lakes included in the first RLS analysis. This may
result from the fact that there is a large number of lacus-
trine fish (i.e., cichlid “species flocks”) in these three African
lakes, and the four North American lakes are connected to
each other (they are part of the Laurentian Great Lakes).
In the LMS analysis of log(SY) against log-transformed
lake thermal or lake morphometric variables, the lakes iden-
tified as outliers are those having unique lake physical attrib-
utes. For lake trout, two lakes identified as outliers in all
LMS analyses are Lake of the Woods (12) and Lake Erie
(17) (Fig. 5a, 5b, 6a, and 6b). Both lakes are shallow and
have high air temperatures relative to many of the other
lakes. Such an environment is certainly not favourable for the
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growth of lake trout which is a cold-water species and usu-
ally inhabits deep lakes. This may be the reason that SY’s of
lake trout in these two lakes were relatively lower than from
other lakes. For lake whitefish, two levels of the log(SY)-
log(THV) relationship can be established (Fig. 5c¢). The
lakes in the high level of this relationship have either large
mean depth and low average annual temperature (Great
Slave Lake (1) and Big Peter Pond (5)) or much smaller
THV than other lakes in the analysis, e.g., Little Peter Pond
(6). For lake whitefish, which is a cold-water species, such
an environment favours their growth, and hence higher pro-
ductivity. However, we were unable to identify the reasons
that the North Channel population had a high log(SY) for its
log(THV). Georgian Bay was identified as an outlier because
its log(SY) was significantly smaller for its log(THV) and
log(THA) relative to other lakes in the LMS analysis (Fig. 5¢
and 5d). This may result from the fact that the lake whitefish
fishery in Georgian Bay failed due to heavy commercial
fishing (Cucin and Regier 1966). Without knowing the ori-
gin of the North Channel and Georgian Bay fish and whether
they represent distinct stocks remaining in their own waters,
it is conceivable that both locations are better considered a
single population. No outliers were identified in the LMS
analysis of log(SY) of lake whitefish against the lake mor-
phometric variables (Fig. 6c and 6d), implying that all lakes
included in the analysis had a similar log-transformed
SY-morphometry relationship.

Walleye is a cool-water fish species and inhabits the shal-
low waters of these large northern lakes during most of the
year (Scott and Crossman 1973). This may explain why
Lake Erie (17) has significantly higher log(SY) for its
log(area) and log(volume) (Fig. 6e and 6f) and Great Slave
Lake (1) has significantly lower log(SY) for its log(THA)
(Fig. 5f) relative to other lakes in the LMS analysis. How-
ever, we are unable to suggest reasons for other outliers.
Three lakes identified as outliers in the LMS analysis of
log(SY) against log(THV) or log(THA) have the three largest
surface areas in this study (Fig. 5e and 5f). The reasons for
this relationship remain unclear.

For both walleye and northern pike, the LS and RLS
regression analysis between log(SY) and lake morphometric
variables was not significant, implying that lake morpho-
metric variables were not significant predictors of the SY
of these two fish species. However, for two other species,
lake morphometric variables tended to explain the major-
ity of variance of log(SY) (Table 1). For all four species,
lake thermal variables explained most of the variance of
log(SY) in the regression analysis, and hence they were
good predictors of lake SY of these four fish species. The
RLS analyses tended to increase the values of 7 greatly if
there were outliers identified in the LMS analysis.

It is difficult to identify outliers in muitiple regression
analysis. However, as has been shown in the analysis of
log(SY) versus THV or THA and TDS for the four fish
species, the process of identifying outliers is rather straight-
forward using the LMS analysis. Similar explanations as
those given in the simple linear analysis can be conferred on
the lakes defined as outliers in the LMS multiple regres-
sion analysis. For lake trout, the LS-estimated parameter of
log(TDS) differed significantly from 0. However, after
excluding two outliers (lakes 12 and 17}, the RLS parameter
associated with log(TDS) was not significantly different
from 0, indicating that TDS are not a significant factor in
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explaining the variance of log(SY). For northern pike, after
excluding the outlier Lake Huron, the RLS-estimated param-
eter of log(TDS) became significant in contrast with the
nonsignificant LS parameter.

Two lakes with the lowest pH values were defined as out-
liers in the LMS analysis of yellow perch size at age 1 ver-
sus lake pH (Fig. 7). Both lakes have larger positive resid-
uals than other lakes in the LMS analysis, indicating that
yellow perch inhabiting these two acidified lakes tended to
be relatively larger at a young age compared with yellow
perch from other lakes in the study. Yellow perch are among
the most acid tolerant of the 30 species of fish found in the
La Cloche lakes (Ryan and Harvey 1980). The loss of other
fish species and increased mortality of yellow perch due to
lake acidity likely reduced both interspecific and intraspecific
competition for invertebrate food for young yellow perch
(Ryan and Harvey 1980). In lakes with pH values of 4.35
(Lake Ararat) and 4.10 (Lake Patten), such competition may
be significantly lower than in other lakes with higher pH val-
ues. The significance level of the RLS-estimated regression
equation is much lower than that of LS (p = 0.019 for RLS
versus p < 0.0001 for LS). The variation in log(size at age
1) explained by pH was much lower using RLS than using
LS (24% of RLS versus 38% of LS). This indicates that pH
may not be as important as reported in the original paper
in explaining the variance of yellow perch length at age 1.

For biological reasons, a heterogeneous population of
individuals can be regarded as mixtures of more homoge-
neous subpopulations (Lwin and Martin 1989). It is unrea-
sonable to define a single model for such a heterogeneous
population. Multiple functions should be used in defining
such a population (e.g., the analysis of fish species rich-
ness and lake surface area in this study). Explanations of
outliers in fisheries data may have significance in practice.
There may be a misconception that the regression analysis for
the data deleting outliers will be better than that for all the
data in explaining the variance of the dependent variable.
This is not true (e.g., when influential data points are defined
as outliers in the LMS analysis, see Rousseeuw and Leroy
1987) as shown from the comparison of the RLS- and
LS-estimated > values for walleye in this study (Table 1).
The RLS-estimated parameters may not necessarily have a
more extreme probability value (i.e., significance level) than
those estimated using the LS method. An example can be
found in the multiple RLS analysis for lake trout (e.g., the
LS-estimated parameter associated with log(TDS) differs
significantly from 0, but the RLS-estimated parameter does
not differ significantly from 0 at p = 0.05; Table 2).

In conclusion, we suggest using the two-step estimation
procedure to analyze fisheries data: (1) applying the LMS
method to identify outliers and (2) using the RLS to esti-
mate parameters. The LMS-defined outliers should be stud-
ied separately with respect to the background information
in the study (e.g., environmental conditions and fish bio-
logical characteristics). Such a study may identify the reason
for outliers. In the case where there is a certain number of
outliers, i.e., five or more, the two-step estimation proce-
dures should be applied to these outliers. Thus, these data are
modelled by multiple regression equations. When there are
no outliers in data, there is no difference in parameter esti-
mation using the LS- and LMS-based RLS methods. LMS
cannot justify why a data point is an outlier unless biologi-
cal and data collecting background information is available.
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