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Fisheries data often contain inaccuracies due to various errors. i f  such errors meet the Gauss-Markov 
conditions and the normality assumption, strong theoretical justification can be made for traditional least- 
squares (LS) estimates. However, these assumptions are not always met. Rather, i t  is more common that errors 
d o  not fo l low the Gauss-Markov and norrna6ity assumptions. Outliers may arise due to heterogenous 
variabilities. This results in a biased regression analysis. The sensitivity of the LS regression analysis to 
atypical values in the dependent and/or independent variables makes it difficult to identify outliers in a resid- 
ual analysis. A robust regression method, least median squares (LMS), is insensitive to atypical values in  
the dependent and/or independent variables in  a regression analysis. Thus, outliers that have significantly 
different variances from the rest of the data can be identified i n  a residual analysis. Using simulated and 
field data, we explore the application of LMS in the analysis of fisheries data. A two-step procedure is sug- 
gested in  analyzing fisheries data. 

Les donnees sur les peches recdent souvent des inexactitudes attribuables 2i differentes erreurs. borsque ces 
erreurs sont conformes aux conditions associees au theoreme Gauss-Marksv et I'application de la nor- 
malite, on  peut evoquer d'excellentes justifications theoriques pour le recours aux estimations par la 
meahode classique des moiwdres carrks (Me). Mais ce n'est pas toujours le cas. En fait, clest plus sou- 
vent le contraire. l %  peut y avoir des valeurs extremes aberrantes, attribuables 3 des variabilites hktkrog&nes. 
Celles-ci donnent lieu des analyses de regression biaisees. La sensibilitb de I'analyse (par regression 
des rnoindres carres) aux valeurs atypiques prises par les variables dkpendantes s u  encore independantes, 
complique la tache d'identifier les observations extremes aberrantes dans une analyse des residus. Une 
m6thode de regression robuste, la rn4thode par les moindres carres medians (MCM), est insensible A ces 
valeurs atypiques, Ainsi peut-on identifier les valeurs extremes aberrantes auxqueiles sont associees des vari- 
ances significativement diff6rentes de celles du  reste des donnkes, dans le cadre d'une arsalyse des residus. 
En appliqeaant des donnees sirnulees et obtenues sur le terrain, nous expldsrons I'application de la methode 
des M C M  A I'analyse des donn4es des p$ches. Nous proposons une proc6dure 2 deux &tapes pour analyser 
les donnees de ces derni5res. 
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Problems with the Least Squares Method 

Investigation of relationships between variables related 
to fish and the environment that fish inhabit often is one 
of the most important objectives for fisheries studies. Such 
an investigation is usually quantified by a linear regression 
equation written as 

where Y, the dependent variable, is some measure associ- 
ated with fish, X's, the independent variables, are usually 
environmental variables, K is the number of independent 
variables, N is the sample size, (E is the error term, and p's 

'~rese~at address: Department of Zoology, University of Toronto, 
Toronto, ON MSS 1A1, Canada. 

are the parameters to be estimated. Because of tradition and 
ease of computation, the least-squares (LS) method has been 
adopted generally to estimate P's. To derive the unbiased 
LS estimates s f  fl's and theoretically justified variance esti- 
mates, the Gauss-Markov conditions must be met, i.e., E is 
independent and identically distributed with a constant vari- 
ance. It is assumed also that the independent variable(s) is 
(are) free of emor. The assumption of normality is required 
for hypothesis tests or the construction of confidence inter- 
vals on the estimated parameters. 

Fisheries md environmental data are typically contaminated 
by laonnormal errors with heterogenous variances. These 
errors may result from various sources: errors in measurement 
and recording, variation from unusual events or abnormal 
environmental conditions, or samples containing measure- 
ments coming from different populations. These enor sources 
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can affect not only the dependent variable but also the inde- 
pendent variables, thereby creating outliers (or influential 
data points) defined as observations that are aberrant or 
unusually different from the rest of the observations 
(Rousseeuw and Leroy 1987). The existence of outliers 
causes many fisheries data to fail meeting the Gauss-Markov 
conditions and normality assumption. In some cases, this 
problem can be remedied by an appropriate transformation 
of the data (e.g., log-transformation, %(imura 1989; Jolicoeur 
1991), by using generalized least-squares methods such as 
weighted least squares (Sen and Srivastava 1990) and itera- 
tive reweighted least squares (e.g., biweight, Holland and 
Welsch 1977), or by fitting the data to more complex models 
such as a nonlinear model. However, it is predictable that 
those approaches may not always function in improving the 
quality of data in regression analysis with respect to the 
normal error and constant variances. A linear regression 
model may be required when studying the fish environment 
data for various reasons, e.g., studying biological theories and 
developed models. Moreover, if some data points do have 
atypical values relative to the majority of data in a regression 
analysis, perhaps they should not be included in the regres- 
sion analysis. In the case of simple regression analysis, it 
is easy to identify outliers by examining the bivariate plot. 
However, such a visual inspection may be quite subjective, 
and it is impossible to do so if there are more than two 
independent variables. Regression diagnostics techniques 
have been applied to identify the outliers in the multiple 
ES regression analysis. However, it is difficult to do such an 
analysis if there are multiple outliers in a data set with a 
large number of observations. As well, it may be difficult to 
identify these outliers from a residual plot, since they do 
not always show up in such a plot (outliers usually pull the 
regression line towards themselves, Sen and Srivastava 
1990). In practice, outliers in fisheries data often go unno- 
ticed because much fisheries data are processed by com- 
puters without careful a priori inspection and screening. 
This is particularly true with data sets having a large num- 
ber of observations. The result from a regression analysis 
of such data may be incorrect due to the existence of outliers. 

Robust Regression Analysis 

Robust regression (RW) techniques have been developed 
that are less sensitive to outliers in the data compared with 
the LS. Because WR estimation is not sensitive to outliers in 
the data, the outliers are usually far away from the fitted 
regression line, and their large residuals can be detected 
easily in a residual analysis. The following RR techniques 
have been well developed for the regression analysis: (1) least 
absolute vdue (EAV, Edgeworth 1887), (2) M estimates (Hukr 
1973), (3) least median of squares (LMS, Rousseeuw 1984), 
(4) % estimator (Rousseeuw and Yohai 1984), and (5) least 
trimmed squares (ETS, Rousseeuw 1984). These methods 
are all robust with respect to outliers in the dependent vari- 
able. However, the first two methods are not robust with 
outlying independent variables (Rousseeuw and Leroy 1987). 

A parmeter, the breakdown p in t ,  is used often to describe 
the ability of an estimation method in identifying the unbi- 
ased estimates for data having outliers. It is defined as the 
smdlest fraction of congarraination ha t  can cause the estimator 
to take on biased values far away from the true estimates 
(Rousseeuw and Leroy 1987). It is obvious that the largest 

value that can be expected for the breakdown point is 58%. 
For a larger amount of contamination, it is impossible to 
distinguish the "'good" and the "bad" parts of the data. 

The following estimation methods are used in our study: 
LS, Ricker9s geometric mean (GM), LAV, LMS, and the 
LMS-based reweighted least squares (RLS). The GM method 
(or reduced major axis) is well known in fisheries studies 
(Ricker 1975). It is recommended that it be used when the 
independent variable is subject to errors (McArdle 1988). 
Instead of minimizing the residual sum of squares like ES, 
the methods of EAV and LMS are 

minimize 
-jJEil 6 i=, 

and 
N 

minimize med e ? ,  

respectively, where ei are the residuals calculated as the dif- 
ference between the observed Y and estimated Y from the 
fitted regression line. 

The estimation algorithm for EAV has been well docu- 
mented in inany regression books, but the estimation algo- 
rithm for EMS is relatively unknown. Unlike the traditional 
regression methods, it is perhaps impossible to write down 
a straightforward formula for the EMS estimator. The algo- 
rithm used by Rousseeuw and Leroy (1987) for the EMS 
analysis is similar to the bootstrap (Efron 1979), except for 
the following aspects: (1) sampling size equals the number 
of parameters (K + 1, K is number of the independent vari- 
ables in a regression model as defined in equation (1)) in 
the regression model instead of equalling total sample size 
( N )  as with the bootstrap and (2) sampling in LMS is not 
random; rather, includes all possible combinations of sub- 
sample of size (K + 1) from N data points. For equation 
(I), the LMS estimation algarithm can be described as fol- 
lows: (a) repeatedly draw subsamples of "'K + 1" different 
observations, (b) determine the regression surface (p,) 
through the '6K dk: points for subsample J ,  (c) calculate 
M = med(Y - X P , ) ~  with respect to the whole data set, and 
(d) find the p, which has the smdlest M value for d l  possible 
subsamples of size K + 1, and it is the LMS-estimated P. 

Rousseeuw and Leroy (1987) proposed procedures to iden- 
tify outliers based on the analysis of residuals for LMS. 
They proposed (a) calculate S, = 1.4826(1+58(N-K- 
l))d[min(med E?(P))], (b) compute the residuals, R,, based on 
the LMS-estimated regression equation, and (c) determine 
a weight w i  for the ith observation; if IRl%,I > 2.5, data point 
i is an outlier (for more detailed information, refer to 
Rousseeuw and Leroy (1987)). They also suggested using a 
reweighted least-squares regression to estimate the variation 
for the parameters which is comparable with the variation 
estimated in an LS analysis. The RLS is an ES estimator 
with a weight of 8 for outliers and I for normal data points 
(i.e., outliers are excluded from the RLS analysis). The esti- 
mation algorithm for LMS was detailed by Rousseeuw and 
Leroy (1987) and for LAV by Bloomfield and Steiger (1983). 

Simulation Study 

Various simulation studies have been done using LMS 
and LAV (Wousseeuw and Leroy 1987). However, most of 
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Outliers in Y 6% of Data) Outliers in Y 6% of Data) 

FIG. I .  Estimation of the parameters when there are outliers in Y: (a) intercept; (b) slope. 

Outliers in X (% sf Data) Outliers in X (% of Data) 

FIG. 2. Estimation of the parameters when there are outliers in %: (a) intercept; (b) slope. 

these studies did not examine the effect of outliers on the esti- 
mation of each parameter in cases containing different enor 
structures. In our study, a simple linear model was used for 
the simulation. The X's were randomly generated from a 
uniform distribution of numbers between O and 10. The 
"true" Y's were calculated from the X's using the simple 
linear model with both intercept (b,) and slope (b , )  being 
1.  The "observed" Y9s and/or X's were derived by adding 
the following error structures to the "true9' Y's and/or X's. 
Four scenarios were considered in this study: ( I )  normal 
situation: E in equation ( I )  having distribution of N(8,I); 
(2) outliers in the dependent variable: a certain percentage 
of the data in Y is contaminated by an enor tern N(%0,2), but 
the rest of the data are the same as those in the normal 
situation; (3) outliers in the independent variable: a certain 
percentage of the data in X is contaminated by m error tern 
N(40,2), but the rest of the data are the same as those in 
the normal situation (the same observations were affected 
as in (2)), and (4) outliers in both Y and X :  a certain per- 
centage of the data is contaminated by the error terms in 
(2) and (31, respectively, but the rest of the data are the 
same as those in the normal situation. 

The first scenario is usually assumed in the traditional 
ES regression analysis: errors in the Y variable are likely 
due to measurement errors or random environmental varia- 
tion. The second and fourth scenarios can be observed in 
practice due to abnormal measurement errors for a small 
proportion of data points which may result from the fail- 
ure or inappropriate use of measurement instruments, inex- 
perienced workers (e.g., a new technician), errors in record- 

ing, or errors in entering data into computers. These two 
scenarios may also arise due to some unusual events such as 
abnormal environmental variables (e.g., very high or low 
temperature) or to unkswingly included individuals from a 
different population. The third scenario may be due to a 
limited ability to measure the variable accurately or errors in 
recording and typing data. 

A sample size sf 20 was simulated for each data set. The 
percentage of the data that was contaminated by an error 
tern was chosen to increae from 0 to 50% by increments of 
5%. One hundred simulations were performed for each of 
the four situations at each chosen percentage Bevel of the 
contaminated data. The mean estimated values of b, and b, 
were plotted separately against the percentage of the data 
that had been contaminated by outliers. Because the true 
values of b, and &, are known, such plots show the differ- 
ences in estimating the true values of the parameters among 
estimation methods. 

Application of Robust Regression Methods to 
Field Fisheries Data 

We applied the RR methods in the analysis of the fol- 
lowing sets of fisheries data: (1) number of fish species and 
lake surface area (Barbour and Brown 19741, (2) fish sus- 
tained yields (SY) and lake thermal variables (Christie and 
Regier 1988), (3) fish SY and lake morphsrnetric variables 
(THV = thermal habitat volume. $HA = thermal habitat 
area; Christie and Regier 1988), (4) multiple regression 
analysis of fish SY versus THV or THA and total dissolved 
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0 0.4 

0 5 10 15 20 25 30 35 40 45 50 0 5 10 I S  20 25 38 3% 48 45 50 

Outliers in X and Y j% ~1 Data) Outliers in X and Y (% of Data) 

FIG. 3. Estimation of the parameters when there are outliers in both X and Y: (a) intercept: (b) slope. 

solids (TBS: Christie and Regier 1988), and (5) fish size 
at age and lake pH (Ryan and Harvey 1980). 

These data sets were all fitted to the linear regression 
equation by the original authors using the LS method. In 
our study, they were fitted to the same model using the 
LMS and RLS methods. The defined outliers in the EMS 
analysis were examined further as a means of explaining 
why they differed significantly from the rest of the data. If 
there were five or more outliers, a Hinear function was fitted 
to them using LMS and WLS (the minimum sample size for 
LMS analysis was five, as defined by Rousseeuw and Leroy 
(198'7)). If the resultant RLS line was significant, differ- 

'81 3 

RbS for Outliers 

ences in slope between the estimated lind for the outliers 0 4 I 

-2 0 2 4 6 8 18 12 14 
versus the line for the remainder of the data were tested. If 
the differences were not significant at pa = 0.05, the differ- In(kake Surface Area) 
ences in intercept between two lines were examined. 

 FIG^ 4. Regression analysis of the number of fish species per 
lake ts lake surface area. Lakes are numbered following Barbour 

Results and Brown (1974). 

Simu1ation Study 

Simulation results are summarized in Fig. I when there 
were outliers in Y. The LAY LMS, and RLS appear to have 
smaller estimation biases than the kS and GM methods. The 
results are shown in Fig. 2 when only X contained outliers. 
It appears that the LMS and RLS methods yielded smaller 
estimation biases than the other three methods. When both 
% and Y had outliers, the LMS and RLS methods again 
yielded smaller estimation biases than the other three methods 
(Fig. 3). 

Analysis of Field Fisheries Data 

( 1 )  Number offish species and lake surface area 
The ES-estimated linear regression equation was 

ln(number sf  fish species) = 2.34(8.199) 

f 0.143(0.0266)ln(%ake area), r = 0.55, N = '70 

where the number in parentheses is the estimated standard 
error for the parameter, P is the correlation coefficient, and 
N is the sample size used in the estimation. The LMS- 
estimated equation was 

ln(number of fish species) = 

2.649 f O.O19ln(lake area), r = 8.45, N = 70. 

The following 12 Bakes were defined as outliers: Chad 
(3, numbers show lake position on Fig. 4), Malawi ('I), 

Mweru (8), Tanganyika (1 31, Victoria ( 14), Zisahuema (3 I), 
Balkhash (a?), Black Sea (391, Erie (541, Huron (551, 
Michigan (58), and Ontario (59) (Fig. 4). The RLS- 
estimated regression equation was 

ln(number of fish species) = 2.6'7(0.152) 

9 B.068(O00222)ln(lake area), r = 0.38, N = 58. 

An LMS regression was used to fit a simple linear equa- 
tion to 12 outliers. Four of 12 lakes were defined as out- 
liers again: Malawi (?), Tanganyika (13), Zirahuen (3 I), 
and Balkhash (3'7). The resultant RLS equation was esti- 
mated as 

In(number of fish species) = 3.32(0.177) 

9 0.136(0.~483)ln(lake area), r = 0.78, N = 8. 

There was a significant difference in slopes between the 
two WkS-estimated equations (p  = 0.04). 

( 2 )  Fish sustained yields and lake thermal variables 
For lake trout (Salvelinus nanzaycush), Lake of the Woods 

(12) and Lake Erie (17) were identified as outliers in the 
LMS analysis of SY with THA and with THV. Both lakes 
had smaller log,,(SY) of lake trout than predicted for their 
values of Iog,,(THV) and log,,(THA) (hereafter, log,, is 
denoted as log). The WkS-estimated slope was smaller and 
the intercept was greater than those of LS regression analy- 
sis (Fig. 5a and 5b). 
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LS: log(SY) = 0.94 + O.Bllsg(THV) 

WLS: Iq(SY) = 1.85 + O.%log(THV) 

RLS: Iog(SY) = 4.53 + 0.44log(THV) 

- 1 o 1 2 3 4 o t 2 a 4 

log(Therma1 Habitat Volume) log(T&sermaB Habitat Area) 

7 7 

6 6 

5 5 '  

4 4 

lag(Therrnal Habitat Volume) log(Therrna1 Habitat Area) 

FIG. 5. Plots of In-transformed total SY (kg.yr-l, Bn = log,) versus In-transformed TMV (hrn3-10 d-') and THA (hn.10 d-') for four 
fish species (data from Christie and Regier 1988): (a and b) lake trout; (c and d) lake whitefish; (e and f )  walleye; (g and h) northern 
pike. 

For lake whitefish (Coregonus clupeaformis), the fol- 5.21 $. 0.45log(THV), r = 0.68, N = 4, with Georgian Bay 
lowing lakes were defined as outliers in the LMS analysis sf (15) remaining an outlier. There was no significant difference 
lsg(SY) versus Bog(THV): Great Slave Lake (I), Big Peter in the slope (g = 8.10), but the intercept s f  the above equa- 
Pond (%), Little Peter Pond ( 6 ) ,  Georgian Bay (151, and tion was significantly larger than that s f  the first RLS- 
North Channel (16) (Fig. 5c). The second RR analysis for estimated equation (g < 0.801). Georgian Bay had a sig- 
these five Bakes provided an RLS equation of lsg(SY) = nificantly smaller log(SY) for its log(THPV) compared with 
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TABLE 1. Coefficient of determination for the regressions of species SY (log,,-transformed 
values, kg-yr-l) on several independent variables (log,,-transformed values). NS indicates that 
the slope of the regression is not significantly different from 0 ( p  > 0.05). Numbers in parentheses 
ape the sample sizes used in the regression analysis. 

Independent variable 

Estimation THA TMV Area Volume 
Species method (has10 d-I) (hm3-10 dm') (ha) (hm3) 

Lake trout ES 
RLS 

Lake whitefish LS 
RLS 

Walleye LS 
WLS 

Northern pike LS 
RLS 

other lakes (Fig. 5c). Two outliers were identified in the 
LMS analysis of log(SY) versus log(THA): Lac Ile-B-la- 
Crosse (18) and Georgian Bay (1%). Both lakes had smaller 
log(SY) for their log(THA) than other lakes (Fig. 5d). 

For walleye (Stizostedion atitreurn), no outliers were iden- 
tified in the LMS analysis s f  log(SY) versus log(THV) 
(Fig. 5e). However, the following four lakes were identi- 
fied as outliers in the LMS analysis of log(SY) versus 
log(THA): Great Slave Lake (I), Big Peter Pond (5 ) ,  Lake 
Ontario (I$), and Lake Nipigon (20). The RLS-estimated 
intercept and slope in the log(SY)-log(THA) regression 
were greater and smaller, respectively, than those from the 
LS (Fig. 50 .  

For northern pike (ELyox lucius), Lake Superior (la), Lake 
Huron (141, and Lake Michigan (19) were identified as out- 
liers in the LMS analysis of log(SY) versus log(THV) 
(Fig. 5g). These three lakes had significantly smaller log(SY) 
for their log(TWV) than other lakes. The RLS-estimated 
slope was twice as large as that of LS, but the RLS intercept 
was almost the same as that of LS (Fig. 5g). In the LMS 
analysis of log(SY) versus log(THA), Lake Huron (14) was 
defined as an outlier and had a smaller log(SY) for its 
log(THA) compared with other lakes. The RLS-estimated 
intercept and slope were smaller and larger, respectively, 
than those from the LS (Fig. 5h). 

For all four fish species, the WLS-estimated coefficient 
of determination (r2) was greater than the LS-estimated r2  for 
those regression analyses in which there were outliers iden- 
tified in the LMS analysis (Table 1). 

(3) Fish sustained yields and lake rnorphornetric variables 
For lake trout, Amisk Lake (3, Lake of the Woods (1 2) ,  

and Lake Erie (17) were defined as outliers in the LMS 
analyses of log(SY) versus Bog(AREA) and log(SY) versus 
log(VOL). All three lakes had significantly smaller log(SY) 
for their values of log(AREA) and lsg(VOL) than other 
lakes in the LMS analysis (Fig. 6a and 6b). There were no 
outliers identified in the LMS analysis of log(SY) versus 
log(AREA) and log(V0L) for lake whitefish (Fig. 6c and 
6d). For walleye, Lake Erie (19) was defined as an outlier in 
the LMS analysis of log(SY) and either log(AREA) or 
log(VOL) (Fig. 6e and 60.  There were no outliers identi- 
fied for northern pike (Fig. 6g and 6h). For both lake trout 
and walleye, the differences in the slope and intercept 

Can. J.  Fish. Aquaf. ScL, Vod. 51, 6994 

between LS and RLS were the same as those in the analysis 
of SY versus THV and THA (Fig. 5a, 5b, 6a, and 6b for 
lake trout; Fig. 5e, 5f, 6e, and 6f for walleye). The RLS- 
estimated r Z  was larger than the LS r Z  for lake trout 
(Table 1). For walleye, the RLS r 2  was smaller than the 
LS rZ,  but neither of the RLS- and LS-estimated equations 
was significant (Table I). 

(4 )  Multiple regression analysis offish SY versus THV 
or  Tfpa and TDS 

Variables selected as the regressors in this study were the 
same as those in Christie and Regier (1988). For all four 
fish species, there was at least one lake defined as an outlier 
(Table 2). The RLS-estimated parameters differed from those 
of LS. For lake trout, the LS-estimated parameter associ- 
ated with log(TDS) was significantly different from 8, but the 
RLS-estimated value did not differ significantly from 0. For 
northern pike, the LS-estimated parameter associated with 
log(TDS) did not differ significantly from 0, but the RLS 
estimate differed si nificantly from 0. The RLS rZ was K greater than the LS r for a11 four fish species. 

(5) Fish size a t  age and lake pH 
The size of yellow perch (Percaflavescens) at age 1 was 

regressed against lake pH values for 25 lakes from the La 
Cloche Mountain region of Ontario (Ryan and Harvey 1980). 
Two lakes with the lowest pH values were identified as out- 
liers. The LS-estimated r Z  was larger than that of RLS by 
40% (Fig. 9). All the estimated parameters were signifi- 
cantly different from 0. The negative slopes of LS and RLS 
show that the size of yellow perch at age 1 was greater in 
more acid lakes. 

Discussion 

The regression parameters are biased when X is subject to 
measurement error. The bias is often negligible if this error 
is small relative to the errors in the Y variable. If the error 
rate of the X variable is more than a third of that on the 
Y variable, intercept and slope are over- and underestimated, 
respectively, and the GM method is suggested to replace 
LS to reduce the bias (McArdle 1988). However, the valid- 
ity of the GM method has been questioned recently (Jolicoeur 
1990; Kimura 1992). In the simulation study, no normal 
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5 6 7 

log(Surface Area) 

LMS: log(SP() = 4.62 + Q . O ~ I O ~ ( V C $ L )  I 

LS: log(S'B) - 4.68 9 O.OlBq(VOLj 

log(Surface Area) iog(Volume) 

FIG. 6. Plots of In-transfomed total SY (kgyrsl, In = log,) versus In-trmsfsmed lake area (AREA, ha) and volume (VOL, hm3) (data 
from Christie and Regier 1988): (a and b) lake trout; ( c  and d) lake whitefish; (e and 0 walleye; (g and h) northern pike. 

error was assumed for the X variable; instead, a proportion ical values in X andor Y resulted in large biases in LS and 
s f  the X data were expassed~ls a large error distributed as CM estimation, indicating that the breakdown point is 0% for 
N(40,2). The GM estimates were closer to the true values LS and GM. This means that inaccurate estimates of slope 
than LS estimates when X contained outliers (Fig. 2 and 3), and intercept occur when any outliers are present. For robust 
implying that GM was less sensitive to atypical errors in X estimation methods, LAV estimated the true values of p a m -  
than LS. However. the GM estimates still differed consid- eters when only Y contained outliers and the number of out- 
erably from the true values. Our simulations show that atyg- liers represented less than 35% of the data. However, LAV 
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TABLE 2. Multiple LS, LMS, and RLS regression analyses for species total SY 
(kgsya- ') with the thermal habitat measures and the concentration of TDS jmg-~-') .  
The underlined parameter estimates are not significantly different from 0. 

Lake trout 
LS: log(SY) = 4.05 + 0.871og(THV) - 0.691og(TBS), N = 15, r2  = 0.90 
LMS: log(SY) = 3.24 + O.$Olog(TMV) - 0.421og(TDS), N = 15, r" 0.93 
WLS: Iog(SY) = 3.27 + 0.77kog(THV) - Q.42Jog(TDS), N = 13, r 2  = 0.98 
Outliers: Lake of the Woods (7) and Lake Erie (12) 

Lake whitefish 
LS: log(SY) = 3.22 + 0.40log(THV) - 0.741og(TDS), N = 19, r2  = 0.77 
LMS: log(SY) = 3.29 + 0.4810g(THV) - O.S7log(TDS), N = 19, r 2  == 0.92 
RLS: log(SY) = 3.18 + (B.451og(THV) - 0.48log(TBS), N = 18, r 2  = 0.79 
Outlier: Little Peter Bond (6) 

Walleye 
LS: log(SY) = 3.15 + 8.888og(THA) - O.O$log(TBS), N = 19, r2  = 0.72 
LMS: log(SY) = 3.03 + 1.211og(TI-IA) - 0.36log(TDS), N = 19, r 2  = 0.84 
RLS: log(SY) = 2.84 + l.O9log(THA) - 0.18log(TDS), N = 16, r" 0-92 
Outliers: Big Peter Pond (5), Lake Ontario (I$), and kake Nipigon (20) 

Northern pike 
LS: log(SY) = La + 0.431og(TWA) + Blog(TBS) ,  N = 5 ,  r 2  .= 0.49 
EMS: Bog(SY) = 8.86 + 0.741og(THA) + 0.731og(TDS), N = 15, r 2  = 0.38 
RLS: Bog(SY) = 1.28 + O.Sllog(THA) + 1.251og(TDS), N = 14, r 2  = 0.65 
Outlier: Lake Huron (14) 

wm sensitive to outliers in PP, md a few outliers in X resulted 5 

in great departures of the LAV estimates from the true values 
(Fig. 2 and 3). This implies that the breakdown point for 

Lake P ~ I ~ ~ R  I 
LAV is similar to kS and GM. Differing from these three 1 MS: In(bengtk at Age 1) - 4.37 - 5.02(kko pH) 

methods, LMS and RLS were not sensitive to outliers in X Lake Ararat 

andlor Y. The estimates derived from these two methods 0 

4_ 4.5 - were almost the same as the true values when the number of a 
outliers represented less than 35% of the data, implying that 
the breakdown point is 35% for LMS and RLS with respect F 
to the simulation data. These results are similar to those of 2 
Rousseeuw and Leroy (1989) who reported a breakdown 

@ 
point of 50%. However, the breakdown point of 35% defined 
in our study suggests that 50% is an overestimate for the 
defined simulation data. Because of the robustness of LMS 
and RLS with respect to outliers in % and/or Y, we suggest 
that researchers consider them when analyzing fisheries 
data. 

Twelve lakes were defined as outliers in the first LMS 
analysis of fish species richness and lake area. Among these 
lakes, five were from Africa, five from North America, and 
two from the former USSR. All these lakes, except Zirhuen 
(31, Mexico) and Balkhash (37, Kazakhastan), were defined 
as outliers due to their exceptionally Barge number of fish 
species for their sizes (Fig. 4). The second LMS analysis 
indicated that four of these 22 lakes were outliers. Among 
these four outliers, Lakes Malawi (7) and Tmganyika (13) of 
Africa have exceptionally large numbers of fish species for 
their size. The exceptional age of these lakes relative to 
glaciated lakes of the Northern Hemisphere has also con- 
tributed to the large numbers of species present. However, 
Lake Zirahuen (31) and Balkhash (37) have exceptionally 
low numbers of fish species for their size. This may be due 
to their unique maphometry and geographic location: Zirahuen 
Lake (31) is located at a fairly high elevation on the fau- 
nistically depauperate Mesa Central of Mexico, and Lake 
Balkhash (37) lies in an interior basin of Asia and is partly 
saline and extremely shallow (Barbour and Brown 1974). 
The second RLS equation was estimated based on eight 

kake pH 

FIG. 7. Blot sf In-transformed length at age 1 of yellow perch 
against lake pH values (data from Ryan and Harvey 1980). 

lakes, four from North America, three from Africa, and one 
from the former USSR. These lakes are among the largest 
lakes in each of the regions in this study (Barbour and 
Brown 1974). The regression slope derived from these lakes 
is twice as large as that derived from the rest of the lakes 
(Fig. %), implying that these Barge lakes have increasingly 
greater numbers of fish species for their sizes relative to 
smaller lakes included in the first RLS analysis. This may 
result from the fact that there is a large number of lacus- 
trine fish (i.e., cichlid "species flocks") in these three African 
lakes, and the four North American lakes are connected to 
each other (they are part of the Laurentian Great Lakes). 

In the LMS analysis of log(SY) against log-transformed 
lake thermal or lake morphsmetric variables, the lakes iden- 
tified as outliers are those having unique lake physical attrib- 
utes. For lake trout, two lakes identified as outliers in all 
LMS analyses are Lake of the Woods (12) and Lake Erie 
(17) (Fig. 5a, 5b, $a, and 6b). Both lakes are shallow and 
have high air temperatures relative to many of the other 
lakes. Such an environment is certainly not favourable for the 
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growth of lake trout which is a cold-water species and usu- 
ally inhabits deep lakes. This may be the reason that SY's of 
lake trout in these two lakes were relatively lower than from 
other lakes. For lake whitefish, two levels of the log(SY)- 
log(THV) relationship can be established (Fig. 5c). The 
lakes in the high level of this relationship have either large 
mean depth and low average annual temperature (Great 
Slave Lake ( I )  and Big Peter Pond (5)) or much smaller 
THV than other lakes in the analysis, e.g., Little Peter Pond 
(6). For lake whitefish, which is a cold-water species, such 
an environment favours their growth, and hence higher pro- 
ductivity. However, we were unable to identify the reasons 
that the North Channel population had a high log(SY) for its 
log(THV). Georgian Bay was identified as an outlier because 
its log(SY) was significantly smaller for its log(THV) and 
log(THA) relative to other lakes in the EMS malysis (Fig. 5c 
and 5d). This may result from the fact that the lake whitefish 
fishery in Georgian Bay failed due to heavy commercial 
fishing (Cucin and Regier 1966). Without knowing the ori- 
gin of the North Chmnel a d  Georgian Bay fish and whether 
they represent distinct stocks remaining in their own waters, 
it is conceivable that both locations are better considered a 
single population. No outliers were identified in the LMS 
analysis of log(SY) of lake whitefish against the lake mor- 
phometric variables (Fig. 6c and 6d), implying that all lakes 
included in the analysis had a similar log-transformed 
SY-morphornetry relationship. 

Walleye is a cool-water fish species and inhabits the shal- 
low waters of these large northern lakes during most of the 
year (Scott and Crossman 1973). This may explain why 
Lake Erie (17) has significantly higher log(SY) for its 
log(area) and log(vo1ume) (Fig. 6e and 6f) and Great Slave 
Lake (1) has significantly lower log(SY) for its log(THA) 
(Fig. 5f) relative to other lakes in the LMS analysis. How- 
ever, we are unable to suggest reasons for other outliers. 
Three lakes identified as outliers in the LMS analysis of 
log(SY) against log(THV) or log(THA) have the three largest 
surface areas in this study (Fig. 5e and 50 .  The reasons for 
this relationship remain unclear. 

For both walleye and northern pike, the LS and RLS 
regression analysis between log(SY) and lake morphometric 
variables was not significant, implying that lake morpho- 
metric variables were not significant predictors of the SY 
of these two fish species. However, for two other species, 
lake morphometric variables tended to explain the major- 
ity of variance of log(SY) (Table 1). For all four species, 
lake thermal variables explained most of the variance of 
log(SY) in the regression analysis, and hence they were 
good predictors of lake SY of these four fish species. The 
RLS analyses tended to increase the values of r2  greatly if 
there were outliers identified in the LMS analysis. 

It is difficult to identify outliers in multiple regression 
analysis. However, as has been shown in the analysis of 
log(SY) versus THV or THA and TDS for the four fish 
species, the process of identifying outliers is rather straight- 
forward using the LMS analysis. Similar explanations as 
those given in the simple linear analysis can be ~ 0 n f e ~ e d  on 
the lakes defined as outliers in the EMS multiple regres- 
sion analysis. For lake trout, the LS-estimated parameter of 
Zog(TBS) differed significantly from 0. However, after 
excluding two outliers (lakes 12 and 17)' the RLS parameter 
associated with log(TDS) was not significantly different 
from 0, indicating that TDS are not a significant factor in 

explaining the variance of log(SY). For northern pike, after 
excluding the outlier Lake Huron, the RLS-estimated param- 
eter s f  log(TDS) became significant in contrast with the 
nonsignificant LS parameter. 

Two lakes with the lowest pH values were defined as out- 
liers in the LMS analysis of yellow perch size at age 1 ver- 
sus lake pH (Fig. 7). Both lakes have larger positive resid- 
uals than other lakes in the LMS analysis, indicating that 
yellow perch inhabiting these two acidified lakes tended to 
be relatively larger at a young age compared with yellow 
perch from other lakes in the study. Yellow perch are among 
the most acid tolerant of the 30 species of fish found in the 
La Cloche lakes (Ryan and Harvey 1980). The loss of other 
fish species and increased mortality of yellow perch due to 
lake acidity likely reduced both interspecific and intraspecific 
competition for invertebrate food for young yellow perch 
(Ryan and Harvey 1980). In lakes with pH values of 4.35 
(Lake Ararat) and 4.10 (Lake Patten), such competition may 
be significantly lower than in other lakes with higher pH val- 
ues. The significance level of the RLS-estimated regression 
equation is much lower than that of LS ( p  = 0.019 for RLS 
versus p < 0.0081 for LS). The variation in log(size at age 
1) explained by pH was much lower using RLS than using 
ES (24% of RLS versus 38% of LS). This indicates that pH 
may not be as important as reported in the original paper 
in explaining the variance of yellow perch length at age I .  

For biological reasons, a heterogeneous population of 
individuals can be regarded as mixtures of more homoge- 
neous subpopulations (Lwin and Martin 1989). It is unrea- 
sonable to define a single model for such a heterogeneous 
population. Multiple functions should be used in defining 
such a population (e.g., the analysis of fish species rich- 
ness and lake surface area in this study). Explanations of 
outliers in fisheries data may have significance in practice. 
There may be a misconception that the regression malysis for 
the data deleting outliers will be better than that for all the 
data in explaining the variance of the dependent variable. 
This is not true (e.g., when influential data points are defined 
as outliers in the LMS analysis, see Rousseeuw and Leroy 
1987) as shown from the comparison of the RLS- and 
LS-estimated rZ values for walleye in this study (Table 1). 
The RLS-estimated parameters may not necessarily have a 
more extreme probability value (i.e., significance level) than 
those estimated using the LS method. An example can be 
found in the multiple RLS analysis for lake trout (e.g., the 
LS-estimated parameter associated with log(TDS) differs 
significantly from 0, but the WLS-estimated parameter does 
not differ significantly from 0 at p = 0.05; Table 2). 

In conclusion, we suggest using the two-step estimation 
procedure to analyze fisheries data: ( I )  applying the LMS 
method to identify outliers and (2) using the RLS to esti- 
mate parameters. The LMS-defined outliers should be stud- 
ied separately with respect to the background information 
in the study (e.g., environmental conditions and fish bio- 
logical characteristics). Such a study may identify the reason 
for outliers. In the case where there is a certain number of 
outliers, i.e., five or more, the two-step estimation proce- 
dures should be applied to these outliers. Thus, these data are 
modelled by multiple regression equations. When there are 
no outliers in data, there is no difference in parameter esti- 
mation using the LS- and LMS-based WLS methods. LMS 
cannot justify why a data point is an outlier unless biologi- 
cal and data collecting background information is available. 
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