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ABSTRACT

 

Effectively summarizing complex community relationships is an important feature
in studies such as biodiversity, global change, and invasion ecology. The reliability of
such community summaries depends on the degree of sampling variability that is
present in the data, the structure of the data, and the choice of ordination method, but
the relative importance of these factors is not understood. We compared the validity
of results from different ordination methods by applying five levels of sampling error
to a simulated coenoplane model at two gradient lengths using two types of data
(abundance and presence–absence). The multivariate methods we compared were
correspondence analysis (CA), detrended correspondence analysis (DCA), non-metric
multidimensional scaling (NMDS), principal component analysis (PCA) and principal
coordinates analysis (PCoA). Our results showed CA and PCA using presence–absence
data were the most successful methods regardless of sampling error and gradient length,
closely followed by the other methods using presence–absence data. With abundance
data, PCA and CA were the most successful approaches with the short and long
gradients, respectively. Approaches based on PCoA and NMDS using abundance
data did not perform well regardless of the choice of distance measure used in the
analysis. Both of these methods, along with the PCA using abundance data, were
strongly affected by the longer gradient, leading to more distorted results.
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INTRODUCTION

 

Communities are complex systems that are not easily described

qualitatively or quantitatively — there is a broad array of biotic,

abiotic, and historical factors that can structure an ecological

community (Jackson 

 

et al

 

., 2001). Accordingly, ecologists use

multivariate ordination methods to create databased, quantitative

summaries of the large complex patterns of species distribution and

abundance within communities, and to connect these patterns to

environmental conditions (Zimmer 

 

et al

 

., 2000; Kenkel 

 

et al

 

.,

2002; Bowman 

 

et al

 

., 2006). In addition to providing basic

understanding about ecological systems, these summaries are

valuable because detailed knowledge of community structure is

necessary to restore the integrity and diversity of a community

that has been damaged by human interference and to monitor

changes in a given community over time (e.g. Kremen, 1992).

The structure of a community is affected by how many species

are present, their relative abundance, and how broadly each com-

ponent species is distributed along environmental gradients.

These differences in structure among sites provide the basic

information used in community analysis. The reliability of the

results from ordination and clustering methods can be greatly

affected by the properties of the observations collected (Gauch

 

et al

 

., 1977; Oksanen & Minchin, 1997). Differences in species

composition among sampling locations are quantified by various

measures of gradient length. Increases in gradient length cause

multivariate ordination methods to perform poorly and potentially

to produce results that are, at best, difficult to interpret with very

long gradients (De’ath, 1999; Tamas 

 

et al

 

., 2001). As a result,

ecologists using multivariate summaries of community data

need to consider how gradient length affects the usefulness of a

particular ordination method.

Most ecological studies rely on data sampled from the field to

draw some conclusion; this means that sample data must be both

meaningful and accurate. One substantial concern is the type of

data that is collected; accurate abundance data are more informative

than presence–absence data, but if sample data are distorted by

sampling biases or errors, this more detailed level of measurement

may be misleading rather than informative (Jackson & Harvey,

1997). There are a variety of problems inherent to sampling
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ecological populations and communities. One of these problems

is rarity. Rare species are those that occur at low prevalence or in low

numbers, or both, making them difficult to sample accurately, if

at all. Often, rare species add ‘noise’ to community summaries,

and as a result, ecologists have debated extensively on whether or

not rare species comprise valuable ecological information, and

whether it is justifiable to remove rare species from a data set to

obtain more representative results about the general community

patterns (Courtemanch, 1996; Brazner & Beals, 1997; Resh 

 

et al

 

.,

2005). The issue is made more difficult because the particular

definition of rarity that a researcher employs is arbitrary. For

plant communities, the concept of rarity is obscured by additional

problems (McCoy & Mushinsky, 1992), including at what point

clonal plants should be counted as individuals (similar problems

exist for colonial animals such as coral). Other problems include

differences arising from measuring the number of individuals vs.

biomass, and for animals, how the differences among life stages

should be considered. The relevance of rare species to a study will

also depend on the researcher’s objectives; research aimed at

conserving rare species must first be able to detect them (Green

& Young, 1993).

Another sampling problem is bias resulting from the gear type

that is used in sampling, or the habitat or season in which

sampling is done. For example, sampling methodology often differs

among studies of benthic invertebrates, and biased results may

arise if a researcher samples only a single habitat (Bradley &

Ormerod, 2002) or uses a particular gear (Kerans 

 

et al

 

., 1992).

The accuracy and precision of sample data may be improved by

repeated sampling but this is time-consuming and, because

many different factors can induce noise — for example, sampling

limitations, species vagility, and the researcher’s own bias —

variability among replicates can be quite high (Gauch, 1982). The

effect of these various sampling problems is that it is frequently

difficult to establish a reliable estimate of abundance, and that

all sample data include various sources of error (Ostermiller &

Hawkins, 2004).

We are therefore confronted with various sources of error and

complications in being able to adequately summarize patterns of

species composition and resemblance of sampling locations to one

another. We have the problem associated with: (1) how representa-

tive our samples are (i.e. errors associated in the sampling of a

particular device); (2) choices in the type of sampling methodology

or device which favours the sampling of particular species in some

habitats relative other species or habitats; (3) intrinsic variability

in each species distribution; and finally (4) methods of data

analysis that affect our ability to effectively summarize patterns

in species composition and site resemblance. Our study focuses

primarily on the combination 2–3 through our ability to adequately

assess the ‘actual’ abundance of each species within a community

across a series of site and the interaction of this combination with

(4) given the numerous choices in resemblance measure and

ordination technique available to researchers.

Many ecologists use multivariate ordination methods to sum-

marize sample data and to describe patterns of species distribution.

The best known of these methods is principal component analysis

(PCA), which summarizes major linear patterns of covariation

into a few axes. PCA provides a low-dimensional summary of high-

dimensional data through the use of a covariance or correlation

matrix to summarize patterns of covariation among variables. It

provides an effective method when there are linear relationships

between variables (see Peres-Neto 

 

et al

 

., 2003). PCA is essentially

a specialized case of another technique, principal coordinates

analysis (PCoA), which is similar to PCA in its goal but permits the

use of a greater breadth of resemblance measures (see Jackson

 

et al

 

., 1989; Legendre & Legendre, 1998). Such choice provides a

careful user the option of selecting a measure that emphasizes

data attributes that are of interest (e.g. relative species abundance

vs. absolute abundance). Correspondence analysis (CA) doubly

standardizes data by row and column totals and calculates the

degree of association based on the chi-squared distance. While

many of the other methods work with specific types of data, or

employ different measures of resemblance depending on the type

of data involved, CA has been shown to be effective with data

ranging from presence–absence through abundance and has also

been shown to be effective with compositional (i.e. proportional

or percentage) data that lead to difficulties with many of the

other approaches (Jackson, 1997). PCA, PCoA, and CA are all

vulnerable to a particular mathematical artefact, in which the

initial ordination axes may be distorted into arches or horseshoes

(ter Braak & Prentice, 1988), particularly when species turnover

is high. Detrended correspondence analysis (DCA) was devel-

oped as an attempt to correct this arch effect by ‘detrending’:

dividing the arch into segments and then centring each segment

on the second axis by subtracting the mean. However, the form

of detrending and number of segments chosen can lead to very

different solutions (Jackson & Somers, 1991; Legendre & Legendre,

1998). Non-metric multidimensional scaling (NMDS) is a non-

parametric approach that creates a graphical summary (e.g. a

two- or three-dimensional graphical solution) of the original rela-

tionships in the data by systematically rearranging the distance

matrix from this plot until the distances between its elements are

ranked as similarly as possible to the distance matrix based on the

original species data. The number of rearrangements (iterations)

that is made is an arbitrary choice based on a variety of criteria,

and the initial configuration of the artificial matrix is known to

affect the final result frequently (Fasham, 1977) and is either based

on using a random initial configuration or on a configuration

based on some of the results from some other ordination methods,

e.g. PCoA. Readers interested in additional details on these

methods are referred to Jongman 

 

et al

 

. (1987), Legendre & Legendre

(1998), Manly (2005), or other recent monographs on community

analysis and multivariate statistical methods.

Combining these ideas, it appears that the usefulness of a

specific community analysis and its summary will depend on the

reliability of the data that were used, the structure of the data, and

the choice of ordination method. While the impact of gradient

length has been examined, it is not clear how the combination of

changes in sampling error and gradient length will affect different

multivariate ordination methods. In this study, we conducted a

comparative analysis to examine how changes in gradient length

and sampling error influence the reliability of ordination methods

in correctly summarizing the general relationships. The specific
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objectives were (1) to visually and quantitatively compare how

well different ordination methods recreated a simulated community

at different levels of sampling variability along relatively long and

short gradients, and (2) to assess how sensitive each ordination

method was to increasing sampling error.

Simulated data sets have been used previously to quantitatively

and qualitatively compare ordination methods (e.g. Karadzic &

Popovic, 1993; McCune, 1997). While simulated models have

certain drawbacks, and may not precisely reflect ecological reality

(Jackson, 1993a; Oksanen & Minchin, 2002), they are nonetheless a

useful tool that facilitates an objective evaluation of the effects of

sampling error on resulting ordination and community inter-

pretation, a topic that has not been examined in detail before.

 

METHODS

 

We generated an initial data set in COMPAS by selecting the

default values that were provided by this program (see Minchin,

1987 for details related to COMPAS), so that the species response

functions had log-random distributions of modal abundance

and uniform random distributions of modal coordinates on each

gradient. Our data set included randomly generated beta

response curves, and abundance values for 40 species across a

two-dimensional space, which simulated the plane of available

habitat. A 10 

 

×

 

 10 grid was used to draw sets of species from the

entire environmental space, and in total there were 100 sets of

species (Fig. 1). This first grid was called 

 

full gradient.

 

 The rate of

turnover for this grid was 3.10 

 

×

 

 2.72 half-change units. Note

that the specifications for this data set were selected after

McCune (1994).

A second 10 

 

×

 

 10 grid of 100 sets of species was constructed

from the central region of the first grid. This second grid was

called 

 

half gradient

 

. The sampling intensity on the half-gradient

grid was effectively doubled because it was half the size of the

full-gradient grid but still included 100 observations; that is, the

first grid had 10 sampling points per gradient, evenly placed at

positions between 0 and 100 and the second had grid had 10

sampling points per gradient, evenly placed between 38.88

and 88.89. The abundance values for each species on the two

gradients were calculated by interpolation using the formula

from Minchin (1987). The parameters required by this formula

were provided by COMPAS for the full-gradient grid, and we

reapplied these same values for the sampling positions on the

half-gradient grid. Only 24 species were present in the half-gradient

grid; the remaining 16 species had distributions that were too

peripheral to be included in the half gradient. All of the treatments

that follow within the Methods section were applied to both

grids (see Table 1 for a summary of treatments).

In order to examine the effect of sampling variability, sample

errors were added to species’ abundances as random, normally

distributed departures from the original values. The error levels

we used were 5%, 10%, 25%, and 50%. The errors were calculated

as a number drawn from a normal distribution 

 

N

 

(0,

 

s

 

), where 

 

s

 

 is

the standard deviation for a given species across all sampling

points multiplied by the particular level of error. We added the

random error to each species’ original abundance value at each

sampling point to generate separate data matrices for species’

abundances along the grid at five levels of sampling variability

(i.e. 0%, 5%, 10%, 25%, and 50%). Negative abundance values

that were derived were replaced with zeros. The estimation of the

percentage of error added to the data was calculated on the data

prior to the replacement of negative values with zero values,

which accurately reflects the patterns of abundance one would

encounter, but error values do not map directly to the data sets

after replacements with zero values.

For each data matrix, five ordination methods (and some

variations on certain methods; see Table 1) were applied to test

how effectively each technique would summarize the pattern in the

original data (i.e. either the full or half gradient 10 

 

×

 

 10 grids).

The ordinations, with their respective measures of resemblance,

Figure 1 The original coenoplane model, before ordination and 
application of sampling variability. The sampling points used for 
comparisons are based on the intersection points of lines.

Table 1 Description of the ordination methods. Each method, with its variations, was carried out on full and half gradient grids, at error levels 
of 0%, 5%, 10%, 25%, and 50%

Method Data type Resemblance measure selected Initial configuration

Correspondence analysis Abundance, presence–absence N/A N/A

Detrended correspondence analysis Abundance, presence–absence N/A N/A

Non-metric multidimensional scaling Abundance, presence–absence Chord distance, Euclidean distance Random, PCoA solution

Principal component analysis Abundance, presence–absence Correlation N/A

Principal coordinates analysis Abundance, presence–absence Chord distance, Euclidean distance N/A
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were as follows: PCA = principal component analysis using a

correlation matrix, PCoA

 

C

 

 and PCoA

 

E

 

 = principal coordinates

analysis using chord distance and Euclidean distance, CA = cor-

respondence analysis using abundance data, DCA = detrended

correspondence analysis, and NMDS

 

C

 

 and NMDS

 

E

 

, which were

based on selecting the best solution obtained from 10 random

starting configurations. Given literature debates regarding the

relative merits of random vs. metric solutions as starting config-

urations, we also used starting configurations based on a PCoA

of Euclidean distance as it always provides lower stress levels

than obtained from a starting configuration based on a PCoA of

chord distances. These solutions are denoted as NMDS

 

P

 

. We

chose the default values, which included STRESS2 as the stress

coefficient (see Rohlf, 1997), monotone regression, a minimum

stress of 0.001, and a maximum ratio of stresses falling between

0.999 and 1. The ordination that provided the minimum level of

stress was selected as the best representation of the method.

Each method was conducted using both abundance data and

presence–absence data; presence–absence data are indicated by

the subscript ‘pa’, e.g. CA

 

pa

 

.

We chose chord distance, also called stand normalization,

because it has been shown to be a more effective standardization

measure than double standardization or no standardization, for

recreating a coenoplane model (Kenkel & Orlóci, 1986). We

chose Euclidean distance as an alternate measure to contrast

against chord distance given that the former emphasizes absolute

abundances, whereas the latter emphasizes species relative

abundances. All ordinations were performed using the 

 



 

02.02

 



 

 statistical package (Rohlf, 1997), with the exception of

DCA, which used 

 



 

 for Windows 4.02 (ter Braak, 1986).

To examine differences in the ordination techniques and the

effects of different levels of sampling error, the 80 ordinations

(5 matrices 

 

×

 

 8 ordination methods per grid 

 

×

 

 2 data types; see

Table 1) were compared to the original grid, and pairwise to each

other, using Procrustes analysis (Jackson, 1995; Peres-Neto &

Jackson, 2001) which provides numerical value for distortion

between a reference and a target matrix (the 

 

m

 

2

 

 and residual sum

of squared values). The 

 

m

 

2

 

 values from the pairwise comparisons

were ordinated by PCoA in 

 



 

-

 



 

, and a minimum spanning

tree was superimposed in order to reveal relationships of relative

similarity between the ordinations (Jackson, 1993b). We restricted

the comparison to using two-dimensional solutions from each

ordination given the two-dimensional nature of the coenoplane

and graphical presentations of the results. However it is possible,

and likely, that some relevant patterns in species composition are

expressed on axes beyond the second axes for some of the methods

considered (e.g. this is well known to contribute to the horseshoe

phenomenon in PCA).

 

RESULTS

Effect of sampling error and gradient length on 
ordination

 

As sampling error increased, distortion as measured by 

 

m

 

2

 

 values

from Procrustes analysis tended to be greater when error was

added, but random in the pattern of whether it increased or not

relative to the degree of error added (Table 2), or alternatively the

distortion increased with increasing error (Table 3). The original

grid of sampling points on the coenoplane is a two-dimensional

grid (Fig. 1). Figures 2–5 permit visual comparison of the coeno-

plane model with the ordination results from different methods

at 0%, 10%, and 25% sampling error, for the full gradient and half

gradient using abundance and presence–absence data, respec-

tively. For the full gradient, at all levels of sampling and for both

types of data, CA

 

pa

 

 consistently returned the lowest 

 

m

 

2

 

 values

out of the ordination methods examined, and provided the least

distorted multivariate summary of the original sampling grid.

Overall, CA

 

pa

 

 and other methods based on presence–absence

data, followed by CA and DCA based on abundance data, were

the best methods for reproducing the original grid structure:

these methods returned small 

 

m

 

2

 

 values and were robust to

sampling error within the range of 0% to 50% error. Of all the

methods we examined, the PCoA

 

E

 

 and the NMDS

 

P

 

 returned the

most distorted results at the full-gradient length, closely followed

by the other PCoA and NMDS solutions, with the exception

of NMDS

 

E

 

.

For the half-gradient grid at all levels of error, PCA

 

pa

 

 and the

other ordinations based on presence–absence data, followed by

PCA based on abundance data, returned the least distorted

results of all the methods. The 

 

m

 

2

 

 values from these methods

Table 2 Procrustean m2 values for the eight ordination methods 
compared to the full-gradient grids, at five levels of sampling error 
(0%, 5%, 10%, 25%, and 50%), using both abundance and 
presence–absence data. High m2 values indicate greater distortion 
(maximum = 1). m2 values are derived from Procrustean 
comparisons of the first two axes from each ordination solution with 
the original grids

Level of sampling error

0% 5% 10% 25% 50%

m2 values — abundance data

CA 0.159 0.169 0.146 0.155 0.151

DCA 0.161 0.149 0.161 0.140 0.137

NMDSC 0.768 0.783 0.790 0.444 0.799

NMDSE 0.454 0.431 0.456 0.448 0.611

NMDSP 0.793 0.794 0.792 0.793 0.819

PCA 0.478 0.486 0.481 0.447 0.488

PCoAC 0.720 0.736 0.796 0.799 0.740

PCoAE 0.797 0.799 0.798 0.818 0.819

m2 values — presence–absence data

CApa 0.045 0.049 0.046 0.043 0.051

DCApa 0.058 0.050 0.051 0.044 0.048

NMDSCpa 0.087 0.088 0.093 0.089 0.089

NMDSEpa 0.087 0.088 0.094 0.094 0.093

NMDSPpa 0.087 0.088 0.094 0.094 0.093

PCApa 0.064 0.073 0.077 0.093 0.092

PCoACpa 0.080 0.087 0.096 0.103 0.104

PCoAEpa 0.087 0.097 0.111 0.128 0.128
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were quite consistent at all levels of sampling error up to and

including 50% error. CA showed a greater degree of distortion

with the half gradient than with the full gradient, and exhibited

 

m

 

2

 

 values of approximately 0.45 at all levels of sampling error

with abundance data, typically much greater than those resulting

from other methods. NMDS ordinations based on abundance

data become much less distorted at the half-gradient length, and

exhibited the lowest 

 

m

 

2

 

 values of any method except those

based on PCA. NMDS ordinations on the half-gradient grid

were relatively robust to sampling errors ranging up to 50%.

Note that NMDS solutions give similar 

 

m

 

2

 

 values for random

and PCoA-ordinated initial configurations, and that the 

 

m

 

2

 

values for NMDS

 

Epa

 

 and NMDS

 

Ppa

 

 are nearly identical.

Overall, the results could be placed into two groups based on

the relative degree of distortion on the shorter gradient vs. the

longer gradient where non-linearity is more likely to be a relevant

factor. Using abundance data, the results based on the CA and

DCA showed less distortion on the longer gradient than on the

shorter gradient, whereas all other results showed greater distortion

with the longer gradient (Tables 2 & 3). One general feature of

both the short- and the long-gradient solutions was that the 

 

m

 

2

 

values were smaller for solutions based on species presence–

absence data rather than the relative abundance data and this was

a consistent feature across the different ordination solutions and

levels of induced sampling error.

 

Relationships among ordination methods

 

Figure 6 summarizes the similarity of the ordination solutions

for the full gradient at all levels of sampling error and for both

abundance and presence–absence data. In Fig. 6, groupings were

located based on similarity, using a PCoA of 

 

m

 

2

 

 values from

Procrustean pairwise comparisons of ordination scores and their

positions on the original grid.

For the full-gradient graph (Fig. 6), there are three main

observations to be made. First, ordinations based on abundance

data tend to fall out according to method for all levels of sampling

error. PCoA and NMDS ordinations tended to fall out together,

and the particular groups that were formed (PCoA

 

E

 

 and NMDS

 

P

 

at the left upper corner, NMDS

 

C

 

 and PCoA

 

C

 

 in the lower left

corner) share common resemblance measures within each group

in general. The exception is NMDS

 

E

 

, which fell out on the lower

right of the graph when all levels of error were considered

(Fig. 6), likely because of its relatively smaller 

 

m

 

2

 

 values with the

Table 3 Procrustean m2 values for the eight ordination methods 
compared to the half-gradient grids, at five levels of sampling error 
(0%, 5%, 10%, 25%, and 50%), using both abundance and 
presence–absence data. High m2 values indicate greater distortion 
(maximum = 1). m2 values are derived from Procrustean 
comparisons of the first two axes from each ordination solution with 
the original grids

Level of sampling error

0% 5% 10% 25% 50%

m2 values — abundance data

CA 0.464 0.463 0.468 0.479 0.456

DCA 0.273 0.271 0.318 0.364 0.290

NMDSC 0.195 0.198 0.205 0.198 0.247

NMDSE 0.251 0.250 0.255 0.277 0.290

NMDSP 0.254 0.255 0.263 0.284 0.354

PCA 0.140 0.138 0.143 0.151 0.147

PCoAC 0.320 0.319 0.345 0.346 0.338

PCoAE 0.464 0.463 0.467 0.471 0.474

m2 values — presence–absence data

CApa 0.095 0.102 0.097 0.110 0.138

DCApa 0.079 0.084 0.084 0.101 0.112

NMDSCpa 0.108 0.113 0.130 0.145 0.140

NMDSEpa 0.097 0.105 0.118 0.131 0.127

NMDSPpa 0.097 0.105 0.119 0.131 0.127

PCApa 0.077 0.085 0.093 0.098 0.110

PCoACpa 0.095 0.109 0.120 0.140 0.139

PCoAEpa 0.079 0.093 0.104 0.121 0.114

Figure 2 Graphical representations of ordination results for the full 
gradient grid at 0%, 10%, and 25% error, using abundance data. 
Lines represent the same lines as in coenoplane grid (Fig. 1), but the 
degree of distortion relative to the regular grid provides a measure of 
the ability of the ordination method to recover the original data 
structure. CA, correspondence analysis; DCA, detrended 
correspondence analysis; NMDS, non-metric multidimensional 
scaling; PCA, principal component analysis; PCoA, principal 
coordinates analysis.
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original grid compared to NMDS

 

C

 

 and NMDS

 

P

 

. From the ordi-

nations based on abundance data, CA and the DCA cluster fell

closest to the original grid. All PCA results are more closely

related to those from the CA and DCA results than they are to the

PCoA or NMDS solutions. Second, all ordinations based on

presence–absence data are positioned closely to each other and to

the original grid, and fall out according to method, as well as the

level of error (see Fig. 6 inset for the more detailed relationships).

Overall, the NMDS

 

pa

 

 methods tend to fall out together and, as for

abundance data, NMDSP

 

pa

 

 and NMDS

 

Epa

 

 are positioned particu-

larly closely to each other. Out of the methods examined, CA

 

pa

 

and DCA

 

pa

 

 are closest to the original grid. Lastly, it is useful to

look at the eigenvalues for Figure 6: the total variation explained

by the plot is high (> 85%) and the structure of the minimum

spanning tree (MST) indicates that plot is an effective summary

of the existing relationships.

For the half-gradient graph (Fig. 7), ordinations once again

tended to fall out by method. DCA and CA are much more

poorly related to the half-gradient grid than to the full-gradient grid

(Fig. 6), and PCA is more closely related to the true arrangement

of observations. The three variations of NMDS also fall out relatively

closely on the second axis; NMDS

 

E

 

 and NMDS

 

P

 

 produced nearly

identical ordinations at every level of sampling error, indicating

that the choice of initial configuration has a much smaller effect

than the choice of similarity measure. Once again, ordinations

based on presence–absence data fall out much closer to the original

grid than ordinations based on abundance data, and nearest-

neighbour relationships fall out by the method as well as the level

of error. The half-gradient grid is most closely related to PCA

 

pa

 

.

DCA

 

pa

 

 and CA

 

pa

 

 tend to fall out together across error levels and

are reasonably close to the half-gradient grid as well; NMDS

 

pa

 

and PCoA

 

pa

 

 are close to the original grid only at 0% error. The

eigenvalues for Figure 7 are high (

 

∼84%), indicating that this

figure explains a great deal of the total variation, and provides an

effective overall summary of the existing relationships, but the

minimum spanning tree shows that some of the multivariate

similarity is not correctly displayed for the PCA solutions based

on abundance (i.e. there is a crossing of the MST lines).

DISCUSSION

It is a frustrating necessity that researchers constructing ordinations

based on species abundances (or any other analytical solution)

must assume, with perhaps little justification or consideration,

Figure 3 Graphical representations of ordination results for the full 
gradient grid at 0%, 10%, and 25% error, using presence–absence 
data. Lines represent the same lines as in coenoplane grid (Fig. 1), 
but the degree of distortion relative to the regular grid provides a 
measure of the ability of the ordination method to recover the 
original data structure.

Figure 4 Graphical representations of ordination results for the 
half gradient grid at 0%, 10%, and 25% error, using abundance data. 
Lines represent the same lines as in coenoplane grid, but the degree 
of distortion relative to the regular grid provides a measure of the 
ability of the ordination method to recover the original data 
structure.
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that their data correctly summarize ecological relationships.

Sampling error from a variety of sources may skew the accuracy

or precision of abundance values, and the degree of this sampling

error will likely be unknown. To address this problem, researchers

require ordination techniques that are robust to ‘reasonable’

amounts of sampling error present, or at least within a known

range of error. Of the methods that we examined, we found that

CApa, DCApa, and PCApa returned the least distorted results at

both gradient lengths, and at all levels of sampling error. With

abundance data, results were specific to gradient length; for

example, we found that PCA is a particularly good choice when a

gradient is short and intensively sampled. This is because PCA

assumes linear relationships among the variables, and for the

short gradient, the sampling pattern is more likely to be linear

(Ominski et al., 1999). The use of PCA is often faulted for use with

ecological data, which frequently contain non-linear relation-

ships and many zeros (Kessel & Whittaker, 1976; Fasham, 1977;

Legendre & Legendre, 1998). However, our results show that PCA

may provide useful and informative results with a short gradient

and therefore gradient length must also be a consideration in the

analysis when abundance data are used. Given that the best results

were obtained using presence–absence data, it is perhaps surprising

that a measure, i.e. Pearson correlation coefficient, known to be

vulnerable to non-linearities and zero values performed so well. We

caution against the general acceptance of using presence–absence

data in PCA given that there are logical reasons why one would

not want to provide linear summaries of binary data, but clearly

additional research in this result is warranted. One promising

avenue of research relates to the use of the Hellinger transformation

in PCA. Legendre & Gallagher (2001) found it to provide good

reconstruction of distances in one-dimensional simulated commu-

nities and further research is warranted for community studies.

Using abundance data, CA and DCA returned the most

accurate solutions for the long gradient when sampling error

was up to 50% of the mean species abundance. The relatively

improved performance of CA and relatively poor performance of

PCA on the longer gradient make sense: CA has been found to

outperform PCA at high levels of beta diversity (Gauch et al.,

1977; Jongman et al., 1987; Legendre & Legendre, 1998) because

it is more tolerant of non-linear changes in species abundances

(Noy-Meir et al., 1975). On the half gradient both CA and DCA

of abundance data performed poorly, although DCA returned

better results than CA, but analyses that used presence–absence

data provided superior performance. The improvement of DCA

over the CA is likely a combination of both rescaling and

‘detrending’ following segmentation, because the DCA grid may

partly resolve an arch effect in the CA grid (see Fig. 4). It is also

possible that the poorer performance of CA on the half gradient

plot results from a particular feature of this method, in which

rare species and sites with few species may be disproportionately

emphasized. DCA performed well at both gradient lengths, and

was fairly robust at a broad range of sampling errors. However, as

there is little theoretical justification for using DCA (Legendre &

Legendre, 1998), the choice of segment number in DCA is arbitrary

(Digby & Kempton, 1987) and affects the stability of the ordination

solution (Jackson & Somers, 1991), and the ordination results do

not demonstrate reduced distortion when compared against

other methods; DCA should be used with caution or avoided in

ecological analyses. The variability in DCA solutions has not

been considered here (although well documented in Jackson &

Somers, 1991) and such variability in community ordinations

simply further complicates the selection of a useful multivariate

summary. As these problems are likely to apply to DCA based on

presence–absence data as well, this method is not recommended.

While many of these findings regarding DCA have been reported

previously, inexplicably the method still remains frequently used.

With abundance data, PCoA performed badly overall. It is

possible that Euclidean distance and chord distance were not

relevant similarity measures for this data set; however, this calls

into question the reliability of PCoA for general use given that

these two metrics represent very different classes of resemblance

measures, i.e. those based on measures incorporating information

about species absolute abundance and those based on measures

incorporating information regarding relative abundance. PCoAC

produced less distorted results than PCoAE at both gradient

lengths and all levels of sampling error. This result suggests that a

researcher employing PCoA should select a resemblance measure

with care (see Legendre & Gallagher, 2001).

Figure 5 Graphical representations of ordination results for the 
half gradient grid at 0%, 10%, and 25% error, using presence–
absence data. Lines represent the same lines as in coenoplane grid, 
but the degree of distortion relative to the regular grid provides a 
measure of the ability of the ordination method to recover the 
original data structure.
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When abundance data were used, the behaviour of NMDS

provided some particularly instructive results. An NMDS

ordination that used a particular resemblance measure tended to

fall out with a PCoA plot using the same measure, for the longer

gradient only (Fig. 6). For the shorter gradient, NMDSP, NMDSC,

and NMDSE ordinations clustered together and exhibited similar

levels of distortion, regardless of the initial configuration or

choice of resemblance measure (Fig. 7). This is not to imply that

each variation of NMDS gave the same result; the ordinations

indicated a range of data structures (Figs 2 & 3). These results

show that the choice of resemblance measure, and initial config-

uration, for NMDS is of greater importance for long gradients,

on which NMDS performed poorly, in any case. Other researchers

have confirmed that the choice of coefficient is important for

NMDS (Kenkel & Orlóci, 1986; Jackson, 1993b), but differed in

their conclusion about the relative suitability of NMDS to accurately

recover the data structure.

There are two additional, interesting results from NMDS

using abundance data, one being the difference in distortion

between gradients. The longer gradient produced more highly

distorted plots than the shorter half gradient. The improved

ability of the resemblance measures to accurately capture the

relationships between observations with the shorter gradient is

responsible for this situation. Although proponents of NMDS

suggest that it is not affected by non-linearities between variables,

it is still essential that the resemblance measure is able to

adequately capture the relationships among the observations.

Failure to do so results in distorted results and an inability to

recover the true relationships. Other studies emphasize that

NMDS is less sensitive to zero values and non-linearities

(Fasham, 1977; Kenkel & Orlóci, 1986), but this sensitivity will

vary depending on the choice of resemblance measure.

The second noteworthy result is that NMDS results demon-

strate that low stress may in fact have higher levels of distortion

as measured by m 2 values, although stress is used as a measure of

goodness of fit (Legendre & Legendre, 1998). For NMDSC on the

full gradient, distortion decreased markedly at 25% error

(Table 1.2), and then increased at 50% error. This finding was

unexpected and we returned to our NMDSC ordination results in

order to examine whether this decrease in distortion was simply

a chance effect. We selected a second result with higher stress

than our presumably more optimal solution, and found that

Figure 6 Principal coordinates analysis 
(PCoA) results from an analysis comprising all 
combinations of the ordinations and error 
levels with the original full grid. The inset, 
located below the main figure, magnifies a 
portion of the plot in order to more accurately 
portray certain relationships. The following 
abbreviations were used for the sake of 
space: NM represents NMDS (non-metric 
multidimensional scaling) and PC 
represents PCoA.
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it was even less distorted, with an m2 value of 0.39. This result

indicates that although performance measures typically used in

NMDS may indicate a good solution, these measures may not be

adequately capturing the relationship to the original data. This

may be due to the stress measures being dependent on monotonic

or linear fits between resemblance measures, rather than a direct

comparison of the ordination solution to the geometry of the

original data pattern (similar relationships exist in the analysis of

distance matrices with Mantel test vs. the direct analysis of the

original variables, i.e. the analysis of distances is not identical

to the analysis of the variables for those same observations).

Unfortunately, we cannot know what the true pattern in the data

is with field data and consequently we must use indirect

measures such as stress, even though our results show that such

measures may not provide the optimal solutions.

Kenkel & Orlóci (1986) found that NMDS (with abundance

data) was a highly effective ordination strategy for a coenoplane

model when chord distance was used as the measure of similarity.

In contrast, we found that the usefulness of ordinations produced

by NMDS depended heavily on gradient length. For short gradients,

NMDS did indeed perform well, but not as well as PCA or analyses

that used presence–absence data. Our study design differed from

that of Kenkel & Orlóci (1986) given we had more observations,

we used 40 species as opposed to 30, and we examined the effects

of sampling error on coenoplane behaviour. Kenkel & Orlóci

(1986) examined coenoplane behaviour at a range of species

turnover rates (from 2.65 half changes to 7.50 half changes)

rather than a range of sampling errors. While there is no simple

or single explanation for the discrepancy between studies (e.g. we

considered both random and metric starting configurations for

our analyses), the difference between our results and those of

Kenkel & Orlóci (1986), as well as the incongruous relationship

between stress and distortion, indicates a need for further

comparisons of NMDS results with those from other methods.

Various measures of similarity/distance have standardizations

or transformations implicit in the measure, but in various

instances the performance of several of the methods may be

improved through the incorporation of additional transforma-

tions and standardizations (e.g. see Legendre & Gallagher, 2001;

Peres-Neto et al., 2006). While evaluations of the performance of

such standardizations and transformations can be made when

data are simulated communities, one cannot assess the relative

Figure 7 Principal coordinates analysis 
(PCoA) results from an analysis comprising all 
combinations of the ordinations and error 
levels with the original half grid. The inset, 
located below the main figure, magnifies a 
portion of the plot in order to more accurately 
portray certain relationships. The following 
abbreviations were used for the sake of space: 
NM represents NMDS (non-metric 
multidimensional scaling) and PC 
represents PCoA.
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improvement of such modifications when analyses are based on

field data and there is no ‘known’ or ‘true’ pattern of observations

to which the ordinations can be compared.

It has been suggested that studies using simulated data do not

adequately represent the range of community variability in natural

studies. Clearly, every field-based study differs in the number of

sites and species sampled, the degree of species turnover across

the range of sites, and various other factors. Simulation-based

studies may fail by not capturing some of these conditions or by

creating very different conditions. Two relevant points of criticism

relate to gradient length (i.e. is it too long or too short?) and the ratio

of gradient lengths when using two-dimensional simulations. We

(D.A. Jackson, R. Paavola, and T. Willis, unpubl. data) reviewed

all papers published over a 2-year period in 12 ecological journals.

From these studies encompassing terrestrial and aquatic

communities of numerous types, we determined that the average

length of the first gradient was 4.10 (range of 1.36–11.98 for

field-based studies), but this mean is slightly overestimated as

several studies simply reported their gradient length as < 2 or < 3

when justifying the use of particular ordination methods. This

finding compares with that in our full-gradient simulation of

3.10. The average ratio of gradient length for the first and second

axes reported in these various publications was 1.17 relative to

the value of 1.14 used in our present study. Therefore our full-

gradient simulation appears typical of results reported for field

studies and our half-gradient simulation would have a shorter

gradient than is typical, but within the range reported in the

literature and both the full- and the half-gradient simulations

would virtually match the typical ratio of gradient length for the

first and second axes as reported in the literature.

As one might expect, lower levels of sampling error tend to

produce more accurate, less distorted results overall. Consequently,

the minimization of sampling error through consistent methodology

among researchers is a concern that must be addressed in order

for field data to produce ecologically meaningful ordinations. In

order to confront this problem, one approach is to perform

multiple ordinations, with varying resemblance measures, and

look for consensus among the results. Further work could

consider the use of replicated sampling to examine the effects of

sampling error further. This would allow comparisons to be

made between multivariate methods using a common set of

replicates vs. comparisons between methods based on different

replicates. Similarly pooling of replicates will reduced variance

between replicates, but this still requires that all species be sampled

equally well (i.e. without bias or at least a consistent bias) which

will not be the case when species vary in life form, patchiness,

habitat, or vulnerability to sampling regime. While many of these

issues have been considered by plant ecologists (e.g. Whittaker,

1978), they remain a major problem in sampling many species of

animals (e.g. fishes in Jackson & Harvey, 1997) with further field

comparisons required in various cases. However, an alternative

approach is to use a presence–absence data format that provides

a very strong standardization for differences in abundance — all

species are considered numerically equivalent — which as long

as the species is detected during the sampling will provide correct

assessments of species presence or absence. Our results indicate

that the use of presence–absence data removes much of the noise

induced by sampling error, and we found that presence–absence

data in a correspondence analysis or even a principal component

analysis provided the best means of recovering the true underlying

pattern in the data regardless of the gradient length considered.

The use of presence–absence data in community analyses is

recommended given that: (1) presence–absence data are often

easier to collect in the field (Green, 1979); (2) allows the inclusion

of more observations with a given amount of effort than trying to

adequately capture relative abundance data (Jackson & Harvey,

1989, 1997); and (3) provided a more accurate representation of the

true community relationships as shown by the results, particu-

larly from PCApa and CApa. In many cases, given the sampling

error involved, we may be misleading ourselves with our use of

relative abundance data in community multivariate analyses.
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