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a b s t r a c t

Multivariate analyses are important tools for the biological assessment of ecological communities. Despite
the popularity of multivariate analyses in bioassessments, there is considerable controversy over how
to treat rare species. As this debate remains unresolved, the objective of this study was to develop a
methodology to quantify the impacts of removing rare species relative to other decisions inherent in
multivariate analyses and to provide insight into their relative influence in our studies. Using fish species
from a well-sampled system, we assessed the impact of several choices common to multivariate analyses,
including the removal of rare species, ordination technique and measures of multivariate resemblance.
Comparisons of multivariate analyses demonstrated the choice of ordination method explained 26% of
the variation among the various results, followed by the choices regarding the removal of rare species
(24.8%) and resemblance measure (11%). At the same time, the removal of rare species had important
ioassessment
rocrustes analysis

site-level impacts relative to full dataset, including a >9 fold change in sites impacted by the removal of
single species, with an emphasis on removing species more correlated to anthropogenic stress. Our study
demonstrates that the removal of rare species had similar or greater influence in multivariate analyses as
other choices inherent in their calculation, such as the choice of ordination method. Better justifications
for the removal of rare species, along with all decisions in multivariate analyses, are needed to move

bioassessments forward.

. Introduction

Multivariate analyses have become important tools in biological
ssessments of aquatic communities (Norris, 1995; Wright et al.,
000). Multivariate analyses are widely used and have been shown
o be accurate and sensitive ways to quantify biological impacts
nd recoveries (Linke et al., 2005). Several national bioassessment
rograms are based on multivariate measures, including those in
he United Kingdom (e.g., RIPVACS; Wright et al., 2000) Australia
AUSRIVAS; Simpson and Norris, 2000), Canada (Reynoldson et al.,
001), as well as elsewhere (Bailey et al., 2004; Van Sickle et al.,
007). In total, approximately 30% of bioassessment articles use
ultivariate statistical methods (Dolédec and Stazner, 2010).
The application of multivariate analyses to bioassessments

f aquatic communities has been a major point of controversy.

olarized debates remain regarding the use of multimetric versus
ultivariate methods (Dolédec and Stazner, 2010), the taxo-

omic resolution needed for species identification (Arscott et al.,
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2006), and to some extent, the use of specific analytical methods
(Marchant et al., 2006; Van Sickle et al., 2007). In particular, the
treatment of rare species has received much attention in bioassess-
ment studies (e.g., Faith and Norris, 1989; Norris, 1995; Cao et al.,
1998; Marchant, 1999, 2002). On one hand, researchers often
remove rare species with the perceived notion that they may add
noise to multivariate analyses and provide little additional infor-
mation beyond more common species (Gauch, 1982; McCune and
Grace, 2002). On the other hand, researchers often retain rare
species in multivariate analyses because they may be better indi-
cators of ecosystem stress than common species (Faith and Norris,
1989; Cao et al., 1998, 2001), given the assumption that some or
all of these rare species may be more sensitive to the stressor(s).
In either case, the debate regarding the treatment of rare species
has remained unresolved and researchers need to be aware of the
impact of their decision of how to treat rare species (among others).

There are many difficulties in attempting to resolve the debate
regarding the treatment of rare species in bioassessments and in
other types of multivariate studies. For example, most multivariate
approaches require several more decisions beyond whether or not

to remove rare species, and these may reduce insight into the effect
of rare species on resultant analyses. Researchers using multivari-
ate methods typically must choose a type of resemblance measure
(i.e., a distance or similarity coefficient) and ordination technique,
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http://www.sciencedirect.com/science/journal/1470160X
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here such choices have been shown to significantly alter results
Podani, 2000; Hirst and Jackson, 2007; Poos et al., 2009). As such,
he resolution to the debate regarding the impact of rare species
annot proceed until the effect of removing rare species is placed
nto a context comparable to other decisions inherent in multivari-
te bioassessments. Unfortunately relatively little effort has gone
nto comparing these methods of bioassessments (Norris, 1995;

archant et al., 2006) and few studies have viewed decisions in
nalyses in a holistic manner (e.g., how do all decisions inherent in
ultivariate bioassessments impact results and which ones are of

reater importance?).
There are two general arguments for the inclusion or exclusion

f rare species in multivariate bioassessments. The first argu-
ent for removing rare species from bioassessments is that rare

pecies provide limited interpretative value (Marchant, 1999). Pro-
onents of this argument suggest that rare species may simply
eflect stochastic sampling effects and therefore add noise rather
han information, to the statistical solution (Gauch, 1982; Clarke
nd Green, 1988; Bailey et al., 2004). We refer to this argument
s the statistical impact argument. Support for this argument
as come from work in previous decades, which showed results

rom multivariate methods could be driven by the inclusion of
are species alone (see Cao et al., 2001; Dolédec and Stazner,
010). To some degree this argument has been examined in the

iterature with analyses of certain aspects of developing a multi-
ariate bioassessment, like data standardizations (Jackson, 1993a;
ao et al., 1999), resemblance coefficients (Jackson et al., 1989),
rdination method (Marchant, 1990), or their combinations (e.g.,
ata standardization and resemblance coefficients; Jackson, 1993a;
irst and Jackson, 2007; taxonomic resolution and rarity; Arscott
t al., 2006). Unfortunately, what has remained largely absent is
quantitative evaluation of the role of rare species in community

ssessments, including an evaluation which answers the practical
uestion of how important rare species are relative to other deci-
ions in multivariate analyses (but see Faith and Norris, 1989). In
his context, the statistical argument can be tested as a hypoth-
sis, with the prediction that differences among analyses should
how considerable variation where rare species are removed rel-
tive to analyses where other decisions have been altered (e.g.,
esemblance coefficient, ordination method). Specifically, does the
nclusion or exclusion of rare species lead to greater changes in
ommunity analyses than those arising due to other decisions (e.g.,
he well documented differences due to choice of ordination)?

The second argument for the inclusion or exclusion of rare
pecies is that such species should be included in multivariate anal-
ses because they are better indicators of ecosystem stress than are
ommon species (Cao et al., 1999, 2001), i.e., common species tend
o have broad ranges of tolerance to many conditions and there-
ore may not provide as good indicators. We refer to this argument
s the biological impact argument. Support for this argument has
ome from empirical studies which note the importance of includ-
ng rare species for conservation issues (Cao et al., 1999, 2001).
roponents of this argument suggest that exclusion of rare species
ay lead to an underestimation of differences between impacted

nd un-impacted sites (Cao et al., 1999, 2001). As one of the main
oals of a bioassessment is to determine site-level impacts (Barbour
t al., 1999; Wright et al., 2000), this argument assumes that the loss
f rare species represent the loss of the strongest signals of impact,
ia decreases in species diversity or changes in community compo-
ition (Cao et al., 1998). Therefore the biological impact argument
an also be tested as a hypothesis, with the prediction that sites
here rare species were removed should be more affected across

ultivariate analyses than sites that had no species removed. If

his result is not found, it would indicate that the exclusion of rare
pecies is warranted as they do not provide meaningful information
eyond that captured by more common species.
Indicators 18 (2012) 82–90 83

Given these definitions and hypotheses, the objective of our
study was to determine the biological and statistical impact of
removing rare species relative to other methodological decisions
inherent in multivariate analyses (e.g., choice of ordination method
and resemblance coefficient). For this evaluation, we use data of
fish communities from of the Sydenham River as a model system
because it has the highest diversity of aquatic fauna in Canada,
as well as the highest number of species at risk in Canada (Poos
et al., 2010). The Sydenham River is a 2725 km2 watershed, which
drains into Lake St. Clair, a connecting waterway of the Lauren-
tian Great Lakes, between Lake Huron and Lake Erie (Poos et al.,
2007). Although the human population is small (∼100,000 within
the watershed), anthropogenic impacts of turbidity remain an
important concern, mostly due to land-use activities dominated by
agriculture (Poos et al., 2010). The Sydenham River has undergone
detailed sampling (Poos et al., 2007, 2008) which provides a high-
quality dataset. As there are many types of rarity (Gaston, 1994), we
define rare species as those which occur infrequently (i.e., at few
locations or low prevalence). As well, we define species that have
a conservation designation (e.g., endangered, threatened, special
concern), as species at risk.

2. Materials and methods

Fishes were collected from the Sydenham River using the
Ontario Stream Assessment Protocol (OMNR, 2007). The Ontario
Stream Assessment Protocol represents a typical bioassessment
protocol for monitoring impacts to aquatic systems (e.g., Barbour
et al., 1999; Wright et al., 2000) and has been used effectively to
monitor changes in riverine communities (Poos et al., 2008). We
used fish rather than benthic macroinvertebrates as they are rel-
atively easy to identify and enumerate and also have been used
extensively in multivariate bioassessments (Bailey et al., 2004;
Dolédec and Stazner, 2010); however the approach we propose is
equally suited to macroinvertebrates or any other taxonomic group
of species.

Fishes were sampled using a variety of approaches (see Poos
et al., 2007); however, for this analysis only electrofishing data
were used as it is the most commonly used method for the bio-
monitoring protocols and regarded as the most effective gear
type for sampling stream-fish assemblages and fish species at risk
(Bohlin et al., 1989; Reynolds, 1996; Poos et al., 2007). Sampling
sites were chosen at random across the entire Sydenham water-
shed. Species were collected at 50 sites in 2002 and 25 additional
sites in 2003.

2.1. Evaluating decisions in multivariate bioassessments

Prior to analysis, four treatments of the removal of species were
applied to the site-by-species matrix. Traditionally, researchers
arbitrarily decide which characteristics define a rare species within
a sample (Faith and Norris, 1989; McCune and Grace, 2002). Some
researchers suggest eliminating species which occur at single sites
because of the inflated correlations created by attempting to relate
potentially random features at that site to its lone occurrence
(Legendre and Legendre, 1998). Others suggest removing species
that occur at less than five percent (McGarigal et al., 2000) or ten
percent of sites (Marchant, 1990; McCune and Grace, 2002) or at
even higher thresholds (Marchant et al., 1997). We used the treat-
ments of: (1) the full dataset (All), (2) removing single-occurrence
species (M1); (3) removing species found at less than five percent
of sites (M5); and, (4) removing species found in less than 10%

of sites (M10). These criteria represented 0, 4, 9, and 21 species,
respectively of the 67 species dataset.

Resemblance coefficients were calculated from each of the four
site-by-species matrices of which rarely sampled species were
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emoved. Several dozen resemblance coefficients have been devel-
ped for use with presence/absence data and their characteristics
re well documented (Gower and Legendre, 1986; Legendre and
egendre, 1998; Podani, 2000). Choice of resemblance coefficients
as been largely subjective and is often based on tradition or on a
osteriori criteria without clear justification (Jackson et al., 1989).
ifferent resemblance coefficients emphasize different aspects of

he relation between observations so the exclusion of rare species
ay alter species relationships and subsequent analyses, such as

rdinations (McGarigal et al., 2000). We used Jaccard’s (J), phi
�), Russell and Rao (RR), and simple matching (SM) coefficients.
hese resemblance coefficients were chosen because they are com-
only used in the literature and/or represent standard examples

mong the continuum of resemblance coefficients (Legendre and
egendre, 1998). For example, Jaccard’s coefficient, which is simi-
ar to the Sorensen coefficient (Appendix A), does not consider joint
bsences; the phi coefficient is the correlation coefficient for binary
ata, whereas Russell and Rao and simple matching are variations
hich consider joint absences (Jackson et al., 1989; Legendre and

egendre, 1998; Podani, 2000). All the resemblance coefficients (R)
ere transformed in metric distances having Euclidean properties

y D = √
1 − R (Gower and Legendre, 1986; Jackson et al., 1989)

here R is the value estimated from the resemblance coefficient.
his transformation to metric properties is effective in princi-
al co-ordinates analysis (PCoA; Legendre and Legendre, 1998)
s it preserves Euclidean space and eliminates potential negative
igenvalues, while at the same time it should have no effect on
on-Metric Multidimensional Scaling (NMDS) solutions due to its
onotonicity in the NMDS estimation. We do note that the square-

oot transformation has the potential to affect large and small
imilarities to a different degree given it is a non-linear transfor-
ation.
Three types of ordination technique were compared for each

ombination of treatments excluding rare species and resemblance
oefficients: PCoA, NMDS, and Correspondence Analysis (CA). These
rdination techniques were chosen because they represent typical
ultivariate methods used by the majority of biologists (Legendre

nd Legendre, 1998; Podani, 2000; McCune and Grace, 2002). In
ddition, we chose these ordination methods as they are widely
sed in general ecological analyses and are popular multivariate
ethods used in bioassessments (Dolédec and Stazner, 2010). For

xample, PCoA using the simple matching coefficient is the same as
Principal Components Analysis (PCA) on binary data, another pop-
lar ordination technique. PCoA, PCA and CA represent eigenvector
ethods, which maximize either the linear (e.g., PCoA, PCA) or uni-
odal (e.g., CA) relationships of multivariate data (Legendre and

egendre, 1998). Alternatively NMDS differs fundamentally in that
t can be used with either linear or non-linear data as relationships
re fitted using an iterative search which minimizes the stress (i.e.,
aximizes the rank correlation) of the k-dimensional configuration

elative to that based on a given resemblance measure (Legendre
nd Legendre, 1998). Whereas both NMDS and PCoA allow the user
o choose a resemblance coefficient, CA (and PCA) does not provide
he same diversity of options given its inherent resemblance coef-
cient (chi-square distance in CA, correlation/covariance matrix in
CA). Although chi-square distances can be used in other ordina-
ion methods (e.g., PCoA, NMDS), it is rarely done with ecological
ata, and so we include it only with CA (the most common
pproach).

It is likely that different ordination methods may emphasize rare
pecies differently.

For example, CA uses the chi-square metric that implicitly

eighs species with the inverse of their commonness in the data

et, which when dealing with abundance data will give higher
eights to rare species (Legendre and Gallagher, 2001). Some stud-

es have suggested that more currently favoured approaches (e.g.,
Indicators 18 (2012) 82–90

NMDS) may be more robust for dealing with rare species than
alternative methods (e.g., PCoA, PCA), especially when non-linear
relationships occur between variables (Cao et al., 2001); although
other studies find NMDS less robust (Hirst and Jackson, 2007).
For NMDS, a random set of 20 starting configurations was used
as input configurations, and the solution having the lowest stress
was retained. Random configurations were chosen in order to avoid
biasing solutions towards those provided by PCoA results (i.e., one
of the reasons argued for using NMDS is to avoid the incorrect
solutions obtained from PCoA). All analyses were completed using
the R programming language v2.7.0 using statistics libraries simba
(Jurasinski, 2007), vegan (Oksanen et al., 2008), ecodist (Goslee
and Urban, 2007), MASS (Venables and Ripley, 2011) and labdsv
(Roberts, 2010).

2.2. Assessing the statistical impact argument

The statistical impact of key methodological choices in mul-
tivariate bioassessments was assessed in several ways. First, all
variants in ordination method, resemblance coefficients and exclu-
sion of rare species were compared using Procrustes analysis
(Jackson, 1995). Procrustes analysis is appropriate for comparing
separate ordination results and was used because it is an orthogo-
nal rotation that best matches two or more ordinations (Peres-Neto
and Jackson, 2001; Paavola et al., 2006). One advantage of using
Procrustes analysis is that scaling/re-scaling or reflection of ordi-
nation axes is not required. In Procrustes analysis raw ordination
solutions are scaled and rotated in order to find an optimal super-
imposition that maximizes their fit (Peres-Neto and Jackson, 2001).
We did preliminary checks of variance explained by each ordina-
tion solution using broken-stick models (Jackson, 1993b; Legendre
and Legendre, 1998) and found that ordinations generally were
best represented by three-axes solutions, which were retained
for further analyses. The sum-of-squared-deviations (i.e., Gower’s
m2 statistic; Digby and Kempton, 1987) provide a metric dissim-
ilarity measure evaluating the resemblance of two ordinations to
one another, with higher m2 values indicating greater dissimilar-
ity (Jackson, 1993a; Peres-Neto and Jackson, 2001). We calculated
m2 distances between each pair of three-dimensional ordina-
tion solutions to produce a matrix of m2 distances between all
thirty-six exclusion-distance-ordination combinations. The resul-
tant 36-by-36 matrix of m2 distances was analyzed using PCoA
to determine the relative effect of each methodological choice.
This type of “ordination of ordinations”, based on the matrix of
m2 distances (see Digby and Kempton, 1987; Jackson, 1993a;
Hirst and Jackson, 2007), provides a useful characterization of
methodological decisions, where larger distances between objects
represent more dissimilar ordination solutions. A minimum span-
ning tree was used to determine the most similar groups and
superimposed onto the first two axes of the summary ordination
diagram.

Variation partitioning of multivariate matrices can provide
quantitative and objective determination of the influence of
methodological choices, such as the removal of rare species. We
quantified the variation of all treatments using a partitioning
method of multivariate matrices (see Rundle and Jackson, 1996).
As the squared deviations of points from the mean represents a
measure of dispersion, where more deviant points have larger
values, the sum of these distances (i.e., the various m2 statistics)
represents a measure of variation. We totaled the sum-of-squared-
deviations for within- and among-treatment groups (e.g., removal
of rare species, ordination technique, and distance measure), simi-

lar to an Analysis of Variance (ANOVA) or variance components. As
such, we compared the variation within a treatment (e.g., removal
of rare species) to variation among treatments (e.g., distance
measure and ordination method) to partition where the variation
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Fig. 1. An example of how vector (Procrustes) residuals can be used to test non-
random changes in multivariate bioassessments. Vectors residuals shown in grey
indicate those sites where at least one species was removed, whereas vectors in
black indicate sites where no species were removed. Ratios over 1 of the mean of
vector residuals for sites with rare species removed versus the mean for sites with-
out removal indicate that multivariate bioassessments are being driven by changes
at sites where rare species were removed (e.g., indicate rare species may provide
important indicators of ecosystem stress). Note: example shown is the compar-
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Fig. 2. Principal Coordinates Analysis (PCoA) of the sum of squares deviations
(Gower’s m2 statistic) comparing the concordance between solutions based on dif-
ferent ordination techniques, resemblance coefficients and treatments of excluding
rarely sampled species. A minimum-spanning tree is overlaid on axes 1 and 2 to
highlight connections between groups of points. Dashed lines are used to con-
nect group membership in cases where clear groupings do not exist (e.g., M10 for
axes 2 and 3). Abbreviations are segregated by: (1) ordination method: Principal
Coordinates Analyses (PCoA), Non-Metric Multidimensional Scaling (NMDS) and
Correspondence Analyses (CA); (2) resemblance coefficient: Jaccards (J), phi (�),
Russell and Rao (RR), simple matching (SM), and (3) removal of rare species: no
species removed (All), single occurrences removed (M1), <5% occurrences removed
(M5), <10% occurrences removed (M10). Note: PCoA using simple matching (SM)
resemblance is analogous to a Principal Components Analysis (PCA), and is noted
son of the full dataset analyzed using Principal Coordinates Analysis (PCoA) with
acaard’s coefficient and the same dataset when species occurring at 5% of sites were
emoved.

s occurring. Although significance testing is possible (via simu-
ation), we did not have strict hypotheses regarding our a priori
xpectations, therefore we did not develop a corresponding null
odel (Rundle and Jackson, 1996). Rather we use this approach

s a means to quantify the relative effects of different decisions
nherent in multivariate bioassessments.

.3. Assessing the biological impact argument

To assess impact of removing rare species from bioassessments,
e compared the sites for which we removed rare species and

valuated any changes across the various multivariate analyses.
ite-level differences were calculated for each pair-wise Procrustes
nalysis using vector residuals (Jackson, 1995). Vector residuals
rovide a means of investigating deviations in position of individual
amples between two superimposed ordinations (Jackson, 1995;
aavola et al., 2006), i.e., the degree to which any given observa-
ion changes from one ordination to another, relative to the other
bservations. The length of the vector residual represents the devi-
tion of the individual observation between two ordinations, with
ow values indicating close agreement between multivariate meth-
ds. We separated vector residuals between sites that had species
emoved from those sites that did not. For example in Fig. 1, we
rovide a typical example of site-level vector residuals across a
omparison of multivariate analyses between two datasets – the
omplete (All) data set and the set with species occurring at 5%
f sites removed. From this comparison, the biological impact of
he removal of rare species can be assessed as the ratio of the

ean of site-level vector residuals for sites where rare species were
emoved (i.e., mean of grey bars; Fig. 1) versus the mean of sites
here species were not (i.e., mean of black bars; Fig. 1). Ratios

ver 1 indicate situations where the impacts of the removal of rare
pecies were not randomly distributed, but related to site-specific
ifferences.
. Results

The multivariate analyses used in this study generally provided
ood representation of the data. Variance explained by the first
for reference in the figure.

three axes from all combinations of multivariate analyses ranged
from 24.58% (PCoA with Jaccard’s distance and all species included)
to 38.36% (PCoA using simple matching as a resemblance measure
and species occurring at less than 10% sites removed; Appendix B).
In all cases, the variance explained by each eigenvector multivari-
ate method (PCoA, PCA, CA) increased with the exclusion of more
species, as expected.

For fish species in the Sydenham River, the removal of rare
species had similar impacts on resultant analyses to those arising
from the choice of ordination type, and had a greater effect than
choice of resemblance coefficient (Figs. 2 and 3). In considering the
relative role of the various decisions to be made, the partitioning

of variation provides a measure summarizing the relative impacts.
Sources of variation in the various solutions were highest among
ordination methods with 26% of the variation explained across all
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PCoA NMDS CA All M1 M5 M10 J Phi RR SM X2
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Fig. 3. Partitioning of variation based on Procrustes analyses (Gower’s m2 statistic) across various choices in multivariate analyses separated by: (A) individual treatments,
and (B) treatment groups. Note: variation partitioning represents the variation measured for a particular treatment (e.g., choice of resemblance coefficient) while controlling
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or differences among other treatments. Abbreviations are continued from Fig. 2.

omparisons, followed by the removal of rare species (25%) and
esemblance coefficient (11%; Fig. 3). These results were also evi-
ent by the well-defined clustering of treatments of rarely sampled
pecies (All, M1, M5) in close proximity to one another relative
o the clustering of the differences in ordination technique (PCoA,
MDS, CA) or in resemblance coefficients (J, �, RR, SM) in the ordi-
ation of m2 distances, i.e., the comparison of the various ordination
esults (Fig. 2). One clear exception to this result was the removal of
0% of the least occurring species, which showed deviations from
he general multivariate groupings (Fig. 2A and B), and variation
hat exceeded most other choices (7%; Fig. 3A).

There was large variation among individual choices across mul-
ivariate bioassessments. Whereas CA demonstrated overall low
mounts of variation among analyses (0.2%), there was large vari-
tion among analyses based on NMDS (22%; Fig. 3A) due to greatly
iffering solutions. Although some of these differences may be

nfluenced by the smaller number of comparisons for CA (as a
hoice of resemblance measure is implicit and not selected), NMDS
howed an almost seven-fold increase in variation over PCoA,
hich involved same number of comparisons and involved the

ame set of resemblance measure and treatment of rare species
Fig. 3A). These findings indicate that decisions such as which ordi-
ation method to choose may be as important as other choices such
s the removal of rare species. In fact, the inclusion or exclusion
f rare species did not impact the resulting multivariate analyses
ny more than the choice of ordination method (i.e., subtotals of
4.8% versus 26.2%, respectively). Further, levels of variation were
imilar between the removal of single occurrence species (6%) and
pecies occurring at 5% of the sites (5.9%) as they were for using
he entire dataset (6%; Fig. 3). Finally, the choice of resemblance

oefficient showed lower levels of variation in general. Variation in
hi-squared values was lowest (0.2%), followed by simple match-
ng (1.5%), Jaccard (2.0%) and the phi (2.2%) coefficients (Fig. 3A).
esemblance measures showed generally low variation relative
to other choices in multivariate methods (11%; Fig. 3B). These
results do not appear to be driven by the choice or characteristics
of the resemblance coefficient. Jaccard’s coefficient, which disre-
gards joint absences, was shown to have similar site-level impacts
than those that consider joint absences (e.g., simple matching;
Appendices A and C).

There was high site-level impact from the removal of rare
species. In most cases, when rare species were removed from
the analysis, the impacts were driven by differences in sites that
contained species that were removed. For example, the site-level
residuals were much higher in sites impacted by the removal of
species than the complete set of data, i.e., All data (Fig. 4 and
Appendix C). Recall that site-level vector residuals represent the
degree to which any given observation changes in its relative posi-
tion from one ordination to another (Olden et al., 2001; Paavola
et al., 2006). Therefore, the ratio of the mean site-level residuals
between sites impacted by species removal and those sites that did
not have species removed provides an indication as to magnitude
that rare species may alter site-level assessments. Overall, sites
impacted by the removal of rare species had a 9-fold change in mul-
tivariate space when single-occurrence species were removed from
the analysis, and 2-fold change when species having prevalence less
than 5% were removed from the analysis. Interestingly, once species
that occurred at less than ten percent of sites were removed from
the analyses, there was virtually no difference between the two
categories of sites (Fig. 4), and in some cases represented less of an
impact (e.g., NMDS-J, NMDS-RR; Appendix C).

4. Discussion
One of the difficulties with assessing the importance of remov-
ing rare species in multivariate bioassessments is the lack of context
from which to judge the impacts of the decision. For example, how
can one evaluate whether the inclusion of rare species provides
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Fig. 4. Site-level impact of the removal of rare species. Shown are box and whisker plots of the ratios of mean Procrustes vector residuals between sites for which rare
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pecies were removed and for those sites that did not have any species removed. A
ull datasets and with the removal of rare species across all resemblance coefficient

edundant information with more common species or provides
ndue influence (i.e., the statistical impact argument; Gauch, 1982;
archant, 1999, 2002; Bailey et al., 2004)? Alternatively how can

ne determine whether rare species are more sensitive to ecosys-
em stress than more common species (i.e., the biological impact
rgument; Faith and Norris, 1989; Cao et al., 1999, 2001)? Here
e evaluated both the statistical and biological impact arguments

s separate hypotheses using fish species data collected from a
ell-sampled aquatic system. Our study demonstrates that some
ethodological choices inherent in multivariate analyses may have

reater influence relative to other choices, such as whether or not
o remove rare species (Marchant et al., 2006). Although there are
ommonly held notions that rare species provide redundant infor-
ation as compared to more common species, or unduly influence
ultivariate analyses (Marchant, 1999): in the case of fish species in

he Sydenham River we show that rare species provided important
ite-specific information, in addition to the general comparison of
ites and species. These results support the biological impact argu-
ent for the inclusion of rare species in bioassessments and not

he statistical impact argument.
The importance of choices in multivariate analyses need to be

etter justified for bioassessment methodologies to progress (we
xpect parallel concerns for studies using multimetric approaches
oo). For example, this study demonstrates that the removal of
are species had similar or greater influence in multivariate analy-
es as other choices inherent in its calculation. Previous research
as noted that differences in resemblance coefficients (Jackson
t al., 1989; Cao et al., 1998; Poos et al., 2009) and ordination
echniques (Jackson, 1993a; Podani, 2000) can lead to drastically
ivergent results. Yet despite this knowledge, researchers wish-

ng to use multivariate analyses for bioassessments rarely justify
hese decisions. More often, researchers select methods based on
ast experience and assume that the resultant summary adequately
odels the underlying data, or they choose solutions which are
ost interpretable with regard to their a priori hypotheses (Jackson

t al., 1989; Jackson, 1997; Podani, 2000). This approach may have
evere consequences for the ultimate goal of inferring commu-
ity responses for multivariate bioassessment. The comparison of

hoices inherent in multivariate analyses demonstrated the effect
f rare species may not be equal across all ordination methods
Figs. 2 and 3). For example, there was great variation among the
MDS solutions relative to the CA and PCoA analyses, indicating
parisons were done by comparing site-level Procrustes vector residuals from the
ordination methods.

that the NMDS results were more susceptible to differences arising
from choice or resemblance measure and the inclusion or exclu-
sion of rare species. As a result, the removal of rare species may
be less of a concern than previously noted when used with some
of these eigenanalysis-based ordination methods (e.g., Marchant,
1999; Marchant et al., 2006), whereas with other choices (e.g.,
NMDS used in ANNA; Linke et al., 2005) it may be equally or more
important. Such results are contrary to the commonly held idea
that NMDS is more robust to data characteristics than methods
based on eigenanalysis and therefore a better standard alternative
for the analysis of ecological communities (Cao et al., 2001, but
see Hirst and Jackson, 2007) – rather we need to carefully evaluate
our choices in each instance rather than simply assuming universal
standards. Our results indicate that researchers must be mindful of
the statistical decisions they make regarding ordination technique,
resemblance coefficient and the exclusion of rarely sampled species
(to name a few), as each may have potential to influence community
responses and impact on meaningful conclusions. Other issues such
as seasonal effects (Bailey et al., 2004), clustering method (Poos
et al., 2009; Jackson et al., 2010), data standardization (Jackson,
1993a; Cao et al., 1999), taxonomic resolution (Arscott et al., 2006)
and data quality (Bailey et al., 2004) also require adequate justifi-
cation.

The removal of rare species may have unknowingly large effects
for our interpretation of the biological conditions determining
impacts or recovery in bioassessments. First, as rare species may
not be as rare as perceived simply as a result of sampling proto-
cols (Preston, 1948; Arscott et al., 2006), the removal of rare species
may limit the number of species from which to assess the biological
community. In our study, the removal of rare species not only lim-
ited the potential species undergoing assessment; it also coincided
with the removal of species with conservation concern, including
species at risk such as the Eastern Sand Darter (Ammocrypta pellu-
cida) and Blackstripe Topminnow (Fundulus notatus). Second, the
removal of rare species may also remove species that are more
sensitive to ecosystem stress. Large-scale agricultural activity and
increases in turbidity has lead to severe declines in several species
in the Sydenham River (Poos et al., 2007, 2010), and these were

shown to be more related to changes in rare species (e.g., Eastern
Sand Darter, Poos et al., 2008). A post hoc analysis corroborated that
the species which occurred less frequently were also more associ-
ated with low anthropogenic stress (e.g., turbidity; Fig. 4). These



8 ogical

r
w
d
a
V
t
s
r
i
c
s
e
i
t
a
o
o
r
e
w
p
h
b
s
l

r
a
t
i
o
o
v
r
c
a
r
(
t
2
o
t
o
N
b
m
t
b
a
e
o
a
c
c

b
v
d
o
1
t
r
f
r
s
c

8 M.S. Poos, D.A. Jackson / Ecol

esults are in agreement with others who found that taxa which
ere more sensitive to stressors tend to be more restricted in their
istribution and thus were found to have considerably lower prob-
bilities of occurring at any given site (Clarke and Murphy, 2006;
an Sickle et al., 2007). Finally, and perhaps most importantly,

he removal of rare species could fundamentally change conclu-
ions of multivariate bioassessments. When rare species were
emoved from the analysis, sites impacted by this removal shifted
n multivariate space to a greater degree than those not directly
hanged by this decision (e.g., >9-fold change for single occurring
pecies; Fig. 4). Therefore, sites containing these more infrequently
ncountered species, i.e., those generally found at sites having less
mpacted environmental conditions are no longer highlighted to
he same degree when these rare species are removed from the
nalysis. Likewise, as more species were removed there was less
f an effect (i.e., M1 > M5 > M10; Fig. 3), likely due to the removal
f more sensitive species at the initial stages (Fig. 4). Therefore the
emoval of rare species not only caused large site-specific differ-
nces in multivariate space, but that these site-specific differences
ere most likely related to the sensitivity of rare species to anthro-
ogenic impacts. These results suggest that removing rare species
as the potential to jeopardize the very rationale for developing a
ioassessment (e.g., to determine impacted versus non-impacted
ites) and must be considered carefully when developing the ana-
ytical methodology.

Of course, there are issues with the inclusion or exclusion of
are species in multivariate analyses which this study could not
ssess. For example, we utilize a holistic approach for determining
he influence of removing rare species relative to choices inherent
n multivariate bioassessments. This framework has the advantage
f determining the influence of each choice while holding the
ther choices constant (i.e., we were able to partition out the
ariation of each choice relative to one another). Therefore, our
esults allow one to assess and appreciate the importance of each
hoice in a multivariate bioassessment. Such an approach is readily
pplicable to all multivariate approaches where choices in the
emoval of rare species, resemblance coefficient, and ordination
or clustering) are required. One cannot use our results to assess
he robustness of individual methods (e.g., ANNA; Linke et al.,
005, BEAST; Reynoldson et al., 2000, RIPVACS; Wright et al 2000,
r AUSRIVAS; Simpson and Norris, 2000), nor should they be used
o do so. Previous research into the impact of removing rare species
n actual bioassessments can be found elsewhere (e.g., Faith and
orris, 1989; Clarke and Murphy, 2006; Van Sickle et al., 2007),
ut in many cases support our results that choices inherent in
ultivariate bioassessments can drastically alter results. Finally,

here are many resemblance coefficients possible for multivariate
ioassessments, which we did not evaluate and these measures
lso include many metrics based on species abundance. We have
xamined this issue in detail and have found no differences in
ur results using a variety of other resemblance coefficients, such
s traditional coefficients (i.e., Sorensen, Kulzynski), unbound
oefficients (i.e., chi-square) and one non-metric probabilistic
oefficient (i.e., Raup-Crick; Poos and Jackson, unpublished data).

Researchers who wish to include rare species in multivariate
ioassessments and minimize their impacts can choose from a
ariety of approaches whether they are using binary data or abun-
ance data. Data transformations can downweight the influence
f rare species (Jackson et al., 1989; Jackson, 1993a; Cao et al.,
999). For example, Legendre and Gallagher (2001) have suggested
he use of Hellinger transformation for reducing the impacts of
are species. Researchers can also choose to reduce their data

rom abundance to presence–absence (as done here), which rep-
esents the strongest form of data standardization and has been
uggested as less likely to bias estimates from resemblance coeffi-
ients (Cao and Williams, 1999). In some cases estimations can be
Indicators 18 (2012) 82–90

used to remove the impacts of rare species, such as the use of Beal’s
smoothing for presence/absence data (McCune, 1994; DeCáceres
and Legendre, 2008). New quantitative approaches for identifying
patterns in communities which do not require as many subjective
decisions may provide robust alternatives (Jackson et al., 2010).
One alternative is to use a global sensitivity analysis, where one
compares several methods, including methods emphasizing differ-
ent attributes (and choices within methods; Green, 1979; Jackson
et al., 1989; Jackson, 1993a). If the methods produce similar results
than one can have greater confidence that the results are more
robust and representative rather than being dominated by the set
of choices used in the analysis (Jackson, 1993a). Ultimately, the
decision to include or remove rare species should be justified by
the goals of the bioassessment. Naturally, researchers wish to limit
their data to reflect the most appropriate number of species, the
most practical resemblance coefficient and the most useful ordi-
nation technique; however, no such criteria exist. In the end, a
more holistic view of multivariate bioassessments is needed move
bioassessments forward, with better justification of all of decisions
inherent in each analysis.
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Appendix A.

Algorithms for a selection of commonly used resemblance coef-
ficients in multivariate analyses.

Jaccard = a

a + b + c

Phi(�) = ad − bc√
(a + b)(a + c)(d + b)(d + c)

Simple matching = a + d

a + b + c + d

Russell and Rao = a

a + b + c + d

Chi-square = (a + b + c + d)(ad − bc)2

(a + b)(a + c)(b + d)(c + d)

Sorensen = 2a

2a + b + c

Kulczlinsky = a

b + c

Raup-Crick = 1 − prob(j)

Note: all binary resemblance coefficients are expressed in terms of
species/site associations using variables a, b, c, and sometimes d,
where a is the number of species shared at a site, b is the number
of species found only in one of the compared sites, c is the number

of species found in the other of the compared sites, and d is the
number of species absent from both sites (see Jurasinski, 2007).
Raup-Crick is a probabilistic resemblance coefficient between sites
based on presence/absence of species. It is defined as the probability
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f finding j shared species in common for each pair of sites. Legendre
nd Legendre (1998) recommend testing for the probability value
or j through permutation.

ppendix B.

Summary of three-dimensional ordination results. Shown are
igenvalues for Principal Coordinates Analyses (PCA) and Corre-
pondence Analyses (CA), with percent variance explained shown
n parentheses. Stress values are shown for Non-Metric Multi-
imensional Scaling (NMDS). Note: we do not show variance
xplained for NMDS as it does not relate to the variation summa-
ized by eigenanalysis ordination methods such as PCoA. Unlike
ll eigenanalysis ordination methods which increase the amount
f variation explained with increasing numbers of axes, NMDS
an actually have less variation explained with increasing num-
ers of axes (see McCune and Grace, 2002) because the variation
onsidered does not represent the same type of information as in
igenanalysis methods.

Ordination technique Axis 1 Axis 2 Axis 3

A-PCoA-J 3.43 (10.67) 2.79 (19.37) 1.67 (24.58)
1-PCoA-J 3.43 (10.67) 2.83 (19.48) 1.68 (24.71)
5-PCoA-J 3.49 (10.99) 2.89 (20.05) 1.70 (25.40)
10-PCoA-J 3.69 (12.01) 3.11 (22.12) 1.70 (27.62)
A-PCoA-� 4.87 (15.05) 3.97 (27.31) 2.14 (33.93)
1-PCoA-� 4.93 (15.09) 4.01 (27.37) 2.17 (34.00)
5-PCoA-� 5.23 (15.51) 4.21 (28.00) 2.30 (34.82)
10-PCoA-� 6.19 (17.25) 4.40 (29.51) 2.61 (36.79)
A-PCoA-RR 2.21 (13.00) 2.06 (25.12) 1.62 (27.02)
1-PCoA-RR 2.23 (13.12) 2.07 (25.29) 1.63 (27.21)
5-PCoA-RR 2.32 (13.65) 2.15 (26.29) 1.65 (28.23)
10-PCoA-RR 2.58 (15.18) 2.30 (28.71) 1.68 (30.68)
A-PCoA-SM 2.03 (15.63) 1.65 (28.36) 0.86 (34.95)
1-PCoA-SM 2.10 (15.67) 1.71 (28.41) 0.89 (35.02)
5-PCoA-SM 2.36 (16.04) 1.92 (29.07) 1.00 (35.85)
10-PCoA-SM 3.06 (17.56) 2.37 (31.16) 1.25 (38.36)
A-NMDS-J 16.00 – –
1-NMDS-J 16.31 – –
5-NMDS-J 16.26 – –
10-NMDS-J 16.12 – –
A-NMDS-� 16.15 – –
1-NMDS-� 16.09 – –
5-NMDS-� 16.28 – –
10-NMDS-� 16.69 – –
A-NMDS-RR 16.20 – –
1-NMDS-RR 16.43 – –
5-NMDS-RR 16.41 – –
10-NMDS-RR 16.10 – –
A-NMDS-SM 15.69 – –
1-NMDS-SM 15.24 – –
5-NMDS-SM 15.28 – –
10-NMDS-SM 15.83 – –
ACA— 0.32 (12.17) 0.22 (20.62) 0.15 (26.17)
1CA— 0.31 (12.24) 0.22 (21.10) 0.14 (26.83)
5-CA— 0.30 (14.03) 0.22 (24.31) 0.14 (30.99)
10-CA— 0.23 (14.88) 0.21 (28.98) 0.12 (36.62)

ote: Abbreviations are separated by treatment: (1) removal of rare species:
o species removed (All), single occurrences removed (M1), <5% occurrences
emoved (M5), <10% occurrences removed (M10); (2) ordination method: Princi-
al Coordinates Analyses (PCA), Non-Metric Multidimensional Scaling (NMDS) and
orrespondence Analyses (CA); and (3) resemblance coefficient: Jaccard’s (J), phi
�), Russell and Rao (RR), and simple matching (SM).

ppendix C.

Site-level impacts of methodological choices in bioassessments.

hown are the ratios between mean site-level vector residuals from
rocrustes analyses of sites having species removed and those sites
aving no species removed. Mean site-level vector residual values
ere separated by sites which had rare species removed (M1: n = 4;
5: n = 9; and M10: n = 21); and compared with those sites that not.
Indicators 18 (2012) 82–90 89

M1 M5 M10

PCoA-J 13.83 2.58 1.10
PCoA-� 2.40 1.45 1.03
PCoA-RR 9.64 1.70 1.26
PCoA-SM 12.61 3.47 1.11
NMDS-J 8.66 2.41 0.93
NMDS-� 9.25 2.00 1.03
NMDS-RR 7.91 1.91 1.27
NMDS-SM 9.58 1.21 0.79
CA 13.97 2.46 1.61

Overall average 9.76 2.13 1.13

Note: Abbreviations are: (1) ordination method – Principal Coordinates Analyses
(PCoA), Non-Metric Multidimensional Scaling (NMDS) and Correspondence Anal-
yses (CA); (2) resemblance coefficient: Jaccard’s (J), phi (�), Russell and Rao (RR),
simple matching (SM), and (3) removal of rare species: no species removed (All), sin-
gle occurrences removed (M1), <5% occurrences removed (M5), <10% occurrences
removed (M10). Comparisons are within each treatment (e.g., sites where species
are removed in M1, to sites where species were not removed in M1), and not between
treatments (e.g., M1-Full). As such the ratios represent the amount of site-level dis-
tortion that is created by removing rare species. Further, as there are no sites where
species are removed in the full dataset, we cannot provide results for such site-level
changes.
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