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Abstract. Ecology is inherently multivariate, but high-dimensional data are difficult to
understand. Dimension reduction with ordination analysis helps with both data exploration
and clarification of the meaning of inferences (e.g., randomization tests, variation partitioning)
about a statistical population. Most such inferences are asymmetric, in that variables are
classified as either response or explanatory (e.g., factors, predictors). But this asymmetric
approach has limitations (e.g., abiotic variables may not entirely explain correlations between
interacting species). We study symmetric population-level inferences by modeling correlations
and co-occurrences, using these models for out-of-sample prediction. Such modeling requires a
novel treatment of ordination axes as random effects, because fixed effects only allow within-
sample predictions.

We advocate an iterative methodology for random-effects ordination: (1) fit a set of
candidate models differing in complexity (e.g., number of axes); (2) use information criteria to
choose among models; (3) compare model predictions with data; (4) explore dimension-
reduced graphs (e.g., biplots); (5) repeat 1–4 if model performance is poor. We describe and
illustrate random-effects ordination models (with software) for two types of data:
multivariate-normal (e.g., log morphometric data) and presence–absence community data.
A large simulation experiment with multivariate-normal data demonstrates good performance
of (1) a small-sample-corrected information criterion and (2) factor analysis relative to
principal component analysis. Predictive comparisons of multiple alternative models is a
powerful form of scientific reasoning: we have shown that unconstrained ordination can be
based on such reasoning.

Key words: AIC; community ecology; cross-validation; ecoinformatics; information criteria; multivar-
iate; ordination; random effects; statistical ecology.

INTRODUCTION

Biologists are often challenged to understand the

interrelationships between large numbers of variables

and observations. Some biological subfields are well

known to be inherently multivariate, meaning their

questions necessarily involve numerous variables (e.g.,

genomics, community ecology, morphometrics). Addi-

tionally, biological data sets are becoming increasingly

multivariate with the growth of bio- and ecoinformatics

(Michener et al. 1997, Jones et al. 2006). And as Houle

(2007) has recently reminded us, biological entities—

from macromolecules to the biosphere—cannot be fully

described with only one or two variables; thus, uni- and

bivariate biological explanations will always be incom-

plete.

Still, it is difficult to make sense of the interrelation-

ships between large numbers of variables. For example,

the well-studied tropical tree data set from Barro

Colorado Island, Panama (Condit et al. 2002) contains

abundances of 225 species (or variables); to understand

the relationships between species in this data set one

must examine 25 200 pairwise relationships and almost

two million three-way relationships. It is difficult with

data sets like this for biologists to develop and convey an

intuitive understanding of the information in multivar-

iate data, and, as a result, it is challenging to learn from

such data. Put differently, visually representing all of

these relationships in a graph is impossible.

These multivariate challenges can be overcome with

ordination analysis (e.g., Legendre and Legendre 1998),

which summarize sets of observed variables with a

smaller, more manageable, number of uncorrelated

variables called axes. The axes are obtained by a

numerical transformation of the original variables.

Ordinations are most useful when they consist of a

small number of axes that summarize most of the

information in the data (i.e., dimension reduction). It is

hoped that these axes will clarify which observational

units (e.g., sites, lakes, quadrats, individuals, etc.) are

most similar to each other. In contrast, when looking at

all of the variables at the same time it is essentially

impossible to be able to comprehend patterns of

similarity, particularly for very large numbers of

variables.

Although dimension reduction is necessary for ex-

ploring complex multivariate data, it is not always
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sufficient. Effective ordination analyses often couple

dimension reduction with inferences about the statistical

population from which the observational units were

sampled. For example, Clarke (1993) was unsatisfied

with the inferential capabilities of multidimensional

scaling (MDS) ordination (e.g., Minchin 1987), and so

he developed statistical tests for detecting patterns

summarized by ordination axes (e.g., nonparametric

analysis of dissimilarities). These tests provided tools for

addressing questions such as: does species composition

(as summarized by ordination axes) differ between sites

near a pollution source vs. control sites? Another

important development in dimension-reduced inference

was constrained ordination (e.g., redundancy analysis

[RDA, Rao 1964]; canonical correspondence analysis

[CCA, ter Braak 1986]), which allows ecologists to

explain multivariate variation using a set of explanatory

variables (e.g., Legendre and Legendre 1998). These

methods provided tools for addressing questions such

as: do spatial or abiotic variables explain more variation

in community composition (Borcard et al. 1992)? When

ordinations are used in conjunction with population-

level inferences, the summaries they provide become

more meaningful.

Our focus here is on methods for dimension-reduced

prediction, which is less common than either dimension-

reduced variation explanation or hypothesis testing.

Variation explanation is concerned with estimating

measures of our ability to predict (e.g., R2), and hence

is related to prediction. But we stress the importance of

going beyond measures of predictive ability to actually

making predictions. In particular, we explore ordination

methods for predicting the values of the variables at

observational units that were not used to construct the

ordination (e.g., validation vs. training data). Prediction

and forecasting are becoming increasingly important as

ecologists are being called upon to predict effects of

anthropogenic global change (e.g., Clark 2007). Predic-

tion is also useful for graphically checking the assump-

tions of models we use to interpret data. For example,

few would take seriously data summaries provided by a

linear regression (i.e., slope and intercept), when

predicting nonlinear data. Such reasoning is useful

because it provides a mechanism for the empirical

criticism of model-based statistical summaries. Howev-

er, this important type of model checking is much less

common in evaluations of the suitability of summaries

provided by ordination axes.

An available method for dimension-reduced predic-

tion in ecology is redundancy analysis (RDA), which

involves regressing multivariate response data against a

set of predictors, resulting in predicted values for each

response variable. The matrix of predicted values is then

summarized with principal component analysis (PCA),

providing a summary of the variation explained by the

predictors. Although RDA is typically used for explain-

ing variation, the fitted regression models can be used to

make predictions. Many similar methods have been

developed (e.g., CCA [ter Braak 1986], distance-based

RDA [Legendre and Anderson 1999], generalized

dissimilarity models [Ferrier 2002]); however, all of

these methods are asymmetric in the sense that before

conducting the analysis each variable is classified as

either a predictor or a response.

We focus on symmetric multivariate prediction and

dimension reduction, in which variables are not classi-

fied a priori as either responses and predictors. For

example, such symmetry is sensible in exploratory

phases of research where directions of causation are

not yet clear. For another example, when the variables

are species occurrences or abundances in a community,

we usually do not think of some species as responses and

others as predictors. Instead we think of associations

(e.g., correlations, co-occurrences) between the variables

(e.g., species). Our approach is to develop models of

such associations and then use these models for both

dimension reduction and prediction. Once symmetric

models are fitted, each variable may be used as either a

predictor or a response in subsequent predictions. For

example, the probability of occurrence of species A

could be predicted given the presence or absence of

species B, but B may also be predicted given A using the

same model; symmetric models predict in both direc-

tions. Predicting species occurrences using the other

species in the community may be more effective than an

asymmetric approach using environmental predictors, as

species co-occurrences naturally integrate information

on a broad range of biotic and abiotic processes (e.g.,

Austin 2002). Furthermore, it is useful to analyze

patterns of co-occurrences before trying to explain them

with abiotic predictors, because the predictors may fail

to identify important patterns (e.g., Whittaker 1967,

Gauch et al. 1974). For example, species interactions

can result in co-occurrence patterns that cannot be

explained by abiotic variables (e.g., Leathwick and

Austin 2001). More generally, accounting for co-

occurrence patterns that cannot be explained by

measured environmental predictor variables is a major

challenge in predictive ecological modeling (Elith and

Leathwick 2009).

We base our approach on the latent variable theory of

ordination (e.g., Gauch et al. 1974, ter Braak 1985, ter

Braak and Prentice 1988, Yee 2004). In this theory,

ordination axes are interpreted as estimates of unob-

served latent variables, on which the observed variables

depend. The process of ordination then consists of

estimating the values of these latent variables for each of

the observational units. To make these estimates, a

parametric model is assumed that specifies an explicit

form for the relationships between the axes and the

observed variables; for example, a linear relationship is

assumed in PCA and a unimodal relationship in

correspondence analysis. The classic synthesis by ter

Braak and Prentice (1988) remains an excellent reference

on how to use these ideas in practice; Yee (2004) updates

this theory with fewer approximations.
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Most symmetric latent variable ordination models in

ecology are treated as fixed-effects models. These types

of models treat the axes (i.e., latent variables) as a fixed
effect, and therefore make no assumptions about their

distribution among the observational units in the

sampled statistical population. For this reason, the

approach can only be used to make inferences about the
specific observational units that happened to be

sampled. To make inferences about all observational

units within the statistical population, it is necessary to
model the variation in the latent variables. Such an

approach would treat the values of the axes as random

effects. While some of the numerical methods of classical

ordination analysis could presumably be modified to
treat axes as random-effects, we have never seen this

done explicitly, although ter Braak et al. (2003) have

explored random-effects ecological cluster analysis. Our

purpose here is to present a case for symmetric
ordination analysis with random effects, and describe

methods for conducting such analyses in practice.

Although our random-effects approach can also be used

for hypothesis testing and variation explanation, as well
as with asymmetric ordination, we focus on symmetric

prediction because this is where its advantages will be

most apparent.

In this monograph, we provide an extensive first
systematic study of the use of random-effects ordination

models in ecology. We begin by illustrating the basic

idea of random-effects ordination. Drawing on previous

statistical work outside of ecology, we describe a linear
random-effects ordination model for understanding data

with an approximately multivariate-normal distribution

and illustrate its use with limnological data. Because
PCA is the most commonly used numerical procedure

for ordination analysis of linear data, we show how it is

related to the linear random-effects ordination model.

We report on an extensive simulation experiment
comparing two methods for selecting the number of

axes for these linear models, while providing the first test

of a conjecture of Burnham and Anderson (2002) about

model selection in small multivariate samples. Then we
describe how to conduct random-effects ordination of

presence–absence data and illustrate its use with fish

community data. We finish with practical recommenda-

tions for using random-effects ordination.

RANDOM EFFECTS ORDINATION

The primary goal of ordination in general is to
summarize a matrix (i.e., table) of data, Y, with a

smaller matrix of ordination scores, X̂, that is easier to

interpret. The ordination, X̂, is a numerical function—or

transformation—of the original data, Y:

Y! X̂ ð1Þ

where the arrow represents this transformation. The

’’hat’’ over the ordination matrix indicates that it is a

statistic calculated from the data, Y. Each of these two

matrices, X̂ and Y, has n rows; one row for each

observational unit (e.g., individuals, lakes, quadrats,

sites). Each of the p columns of Y correspond to a

variable, indicating that p variables were measured on

each of the n observational units. X̂ has fewer columns

than Y; one column for each of the d ordination axes.

Each observational unit is characterized by d ordination

scores, one score along each ordination axis. As d , p,

the ordination, X̂, is a dimension-reduced model of the

original data, Y. In much the same way that ordinary

least-squares regression summarizes the relationship

between a predictor variable and response variable with

a slope and intercept, ordination summarizes Y with X̂.

Many existing analyses can be used for ordination, as

defined above, but we specifically consider a random-

effects approach.

The idea of random-effects ordination is similar to the

idea of random effects in ANOVA models. For most

species, an ANOVA factor such as sex is best treated as

a fixed effect because it usually has only two levels, and

so it is very unlikely that we would want to make

inferences about levels other than male and female.

However, a factor such as parent is typically best treated

as a random effect because we are usually interested in

making inferences about the statistical population of

parent (e.g., maternal) effects and not only the effects of

those parents that happened to be sampled. In ecological

ordination analysis, the observational units (e.g., lakes

in a watershed; quadrats in a field) are typically a

random sample from a statistical population and

therefore the ordination axes will often be best treated

as random effects. To describe how random-effects

ordination works we consider a series of simple

statistical analyses, without going too deeply into the

details, which come later and in Appendix A.

As is often the case when describing multivariate

analyses, it is useful to begin with a univariate analogue

of the type of model we have in mind. Suppose we are

interested in inferring the distribution of a single

response variable. We would typically measure this

variable for a sample of observational units from a

statistical population (Fig. 1A). These data are approx-

imately normally distributed and so we fit a normal

distribution to them (dashed curve). This distribution is

an estimate of the population distribution, and we can

therefore use it to make predictive probability state-

ments about unobserved observational units. For

example, the 95% prediction interval in Fig. 1A asserts

a probability of 0.95 that any particular observation will

be no greater than 3.0 and no less than �3.5.
As ecological systems are usually inherently multivar-

iate, we will often need to study multiple response

variables simultaneously. To keep our illustrations

simple yet multivariate, we consider measuring two

variables in a sample of observational units from a

statistical population (Fig. 1A and B). These data are

approximately bivariate normal and so we fit such a

distribution to them. Again, this distribution is an

estimate of the population distribution, and can be used
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to make predictive probability statements. For example,

this estimate predicts with probability 0.95 that any

particular observation will be within the 95% prediction

ellipse in Fig. 1B.

The main complication introduced by multivariate

inference is that we must model any relationships

between response variables. The bivariate normal

distribution models such relationships linearly by tilting

prediction ellipses, resulting in a model of the correla-

tion between variables. In our example there is a

negative correlation which means that the model

predicts a low probability density of observing relatively

large (or small) values for both variables at the same

observational unit. This type of prediction is symmetric

because neither variable is singled out as a predictor or

response. Symmetric prediction models also have

asymmetric forms, based on the expected value of one

variable given that the other is known (lines in Fig. 1B;

see also ter Braak et al. [2003]).

The need to account for relationships between

response variables is what makes multivariate inference

more difficult to visualize, and therefore why we often

need to reduce the dimensionality of the problem. One

simple asymmetric way to reduce dimensionality is to

identify and measure an explanatory variable (x-axes in

Fig. 1C and D) that is related to both response variables.

We fit one linear regression model to each response

variable separately (Fig. 1C and D). The residuals of

these regressions have a very low correlation (�0.06),
despite the strong correlation between the responses

(Fig. 1B). Hence controlling for the effect of the

explanatory variable eliminates the correlation.

This simple model demonstrates the idea that a

correlation may be modeled by identifying an explana-

tory variable that explains variation in both of the

correlated response variables (e.g., ter Braak and

Prentice 1988). Such an explanatory variable is a good

candidate for an ordination axis—called a direct

ordination axis (Whittaker 1967)—because it provides

a good one-variable summary of more than one (in this

case two) response variables, which is the goal of

ordination. Such an asymmetric approach to ordination

does not work however if the explanatory variable is not

a good predictor of the response variables or if we are

curious about whether there may be other ordination

axes that better summarize them. Hence we often need a

less restrictive approach to deriving ordination models.

The approach that we take is based on the concept of

latent independent variables, pioneered by ter Braak

(1985).

The idea of ter Braak (1985) was to treat the

explanatory variable as a latent variable that is not

observed; rather, the value of the latent explanatory

variable at each observational unit is estimated based on

the information in the observable response data. Such

estimates (x-axes in Fig. 1E and F) can be made using

ter Braak’s (1987) reciprocal summation algorithm,

which he showed to be equivalent to PCA. Using this

approach, even if we do not measure any explanatory

variables, we can still estimate them. Such latent

variables are called ordination axes and can be used to

explain variation and covariation in multivariate data.

However, weighted summation does not provide an

estimate of the bivariate distribution of the two response

variables (Fig. 1B); the reason for this is that the latent

variables are treated as fixed effects, which work for

asymmetric (Fig. 1C and D) but not for symmetric (Fig.

1B) prediction.

There is another interpretation of PCA, called

probabilistic principal component analysis (PPCA;

Tipping and Bishop 1999), that uses the latent variables

to define random effects. Under this interpretation, the

estimated slope parameters that define the relationships

between observed and latent variables (Fig. 1E and F)

can also be used to infer a multivariate distribution of

the observed variables in the statistical population (Fig.

1B). These inferences are made using a model of a two-

FIG. 1. From univariate to dimension-reduced multivariate
predictive inference, with illustrative simulations. The two y’s
denote bivariate normally distributed simulated response
variables, which are described by (A) a histogram and (B) a
scatterplot. Some variation in both of the responses can be
explained by a simulated explanatory variable, x (C, D).
Covariation in the y’s can also be explained by an ordination
axis, x̂ (E, F). See Random effects ordination for a detailed
explanation.
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step hierarchical process. First, the values of the latent

ordination axes at a particular observational unit are

randomly generated. Second, the values of the observ-

able variables are randomly generated from a regression

model that uses the axes as its independent variables.

Such hierarchical processes specify a multivariate

probability distribution (Fig. 1B, called a marginal

distribution; see Linear random-effects ordination by

factor analysis: Marginal distribution of the observable

data) of the observable variables. By fitting such a model

to a sample of data, we can (1) use the fitted multivariate

distribution to make predictions about the statistical

population from which the sample came and (2)

summarize the sample by estimating the values of the

random ordination axes. In the next section, we begin to

describe random-effects ordination models more pre-

cisely. Appendix A provides relevant statistical modeling

background for these descriptions.

LINEAR RANDOM-EFFECTS ORDINATION

BY FACTOR ANALYSIS

We now describe a linear random-effects ordination

model that is suitable for multivariate normal data. Such

data arise in a wide variety of ecological contexts (e.g.,

log-transformed morphometric data or species densi-

ties). This linear model, called the exploratory factor

analysis model (Lawley and Maxwell 1962), is the most

important special case of the family of random-effects

ordination models that we consider and forms the

foundation for nonlinear models (e.g., see Logistic

random-effects ordination by latent traits). Appendix A

contains a general abstract definition of this family.

Assumptions

We use subscripts i ¼ 1, . . . , n, j ¼ 1, . . . , p, and k ¼
1, . . . , d to index observational units, variables, and

axes. In these models, the fitted mean, ŷi ¼ [ŷij], of the
observed response, yi¼ [yij], at the ith observational unit

in the data set, Y, is linearly related to the axis scores, xi
¼ [xik]:

ŷij ¼ aj þ
Xd

k¼1

bjkxikðscalar formÞ

ŷi ¼ aþ Bxiðmatrix formÞ ð2Þ

where a ¼ [aj] is a column vector of intercepts (one for

each variable) and B ¼ [bjk] is a p-by-d matrix of

coefficients relating the p variables to the d axes. There is

variation around ŷi such that the residuals, yi � ŷi, are
normally distributed. This normality assumption means

that the jth variable, yij, has a normal distribution with

mean, ŷij, and variance, wj. In psychometrics, these

residual variances, wj, and standardized versions of

them, are often called uniquenesses. This name is meant

to remind us that wj quantifies variation that is unique to

variable j and therefore not correlated with any of the

other p – 1 variables. We denote the p residual variances

by a column vector, w¼ [w1, . . . , wp]
0, where the prime

means matrix and vector transpose. Each axis score, xik,

is also assumed to be distributed normally with mean

zero and variance one—it is this assumption that makes

this model a random effects model. All residuals and

axis scores are independent of each other. The bjkxik
terms are random effects (sensu Pinheiro and Bates

2000:8); they are random because the axes are treated as

random and they are effects because they represent a

deviation from the overall mean, aj, of each variable, j.

Marginal distribution of the observable data

The normal distributions of the observed response

variables are said to be conditional on the latent

variables (i.e., axes); this means that the distribution of

the observed response variables depends on the values of

the latent variables, just as a dependent variable in

regression is assumed to depend on independent

variables. But in latent variable ordination, the inde-

pendent variables are not observed. The fixed-effects

paradigm of ordination modeling handles this problem

by making point estimates of the latent variables (e.g.,

ter Braak 1987). Here we treat the latent variables as

random and therefore to make inferences we need to

know the marginal distribution—implied by the model

assumptions—of the observed data. The concept of a

marginal distribution is important for all models with

random effects (Pinheiro and Bates 2000); we provide a

brief tutorial in Appendix A. For our purposes, the

marginal distribution can be understood as the assumed

distribution of the observed data, without explicit

reference to the latent variables (e.g., Fig. 1B).

For the linear model, the marginal distribution of y is

multivariate-normal (e.g., Johnson and Wichern 1992).

The multivariate-normal distribution is a generalization

of the familiar normal distribution, which has two

parameters: a mean and a variance. In the multivariate

case, the number of parameters increases from 2 to 2pþ
(1/2)p( p � 1). The 2p part accounts for the mean and

variance of each of the p variables. The (1/2)p( p � 1)

part is the number of covariances between each pair of

variables. It is customary to collect these parameters into

a mean vector, l¼ [l1, . . . , lp]
0, and a p-by-p covariance

matrix, C (e.g., Johnson and Wichern 1992). The entry

in the ith row and jth column of C contains either the

covariance between variables i and j (if i 6¼ j ) or the

variance of variable i (if i¼ j ). The marginal mean and

covariance matrix can be written as explicit functions of

the intercept, a, coefficients, B, and the residual

variances, w (Lawley and Maxwell 1962):

l ¼ a ð3Þ

C ¼ BB 0 þW ð4Þ

where W is a p-by-p diagonal matrix with the residual

variances on the diagonal; such a marginal result is not

possible from the fixed-effects perspective, where the

November 2011 639RANDOM-EFFECTS ORDINATION



distribution of the observed data is only modeled

conditionally on the unobserved latent variables.

Estimation

In real data analysis situations, we do not know the

values of the a, B, and W parameters and so we must

estimate them using data. Many procedures exist for
making such estimates, but we use maximum likelihood

(ML; Lawley and Maxwell 1962; Appendix A). As the

marginal distribution of the data in this model is
multivariate normal, we need a log-likelihood function

that is based on this distribution. The log-likelihood

function for all multivariate-normal models is as follows

(e.g., Tipping and Bishop 1999):

L ¼ � n

2
½plogð2pÞ þ logjCj þ trðC�1SÞ� ð5Þ

where

S ¼ 1

n

Xn

i¼1

ðyi � lÞðyi � lÞ 0 ð6Þ

and the vertical bars denote the determinant of the
matrix between the bars and tr is the matrix trace

function, which is the sum of the diagonal elements of its

argument. For our ordination model, the mean vector
and covariance matrix depend on the p intercepts, a, pd

coefficients, B, and p residual variances, w. Hence we

write this log-likelihood as a function of these param-

eters: L(a, B, w).

The maximum likelihood estimate of the intercept a
does not depend on B or w and can be given in closed

form as the sample mean of the observed dependent

variables (Tipping and Bishop 1999):

â ¼ ȳ [
1

n

Xn

i¼1

yi: ð7Þ

Therefore, combining Eqs. 3, 6, and 7 shows that S at

the maximum likelihood estimate is the sample covari-
ance matrix:

Ŝ ¼ 1

n

Xn

i¼1

ðyi � ȳÞðyi � ȳÞ 0: ð8Þ

The intercept is often of limited interest in many non-

predictive multivariate analyses because data are typi-

cally centered to have a mean of zero (see Legendre and
Legendre 1998). However, an intercept is required for

making predictive inferences on the original uncentered

measurement scale.

Ideally, we would like to estimate the remaining

parameters, B and w, by maximizing

Lðâ;B;wÞ ¼ � n

2
½plogð2pÞ þ logjCj þ trðC�1ŜÞ�: ð9Þ

To get an intuitive understanding of this function

(technically called a profile log-likelihood function

[Royall 1997]), note that it increases as the model

covariance matrix, C, becomes more similar to the

sample covariance matrix, Ŝ; this means that fitted

models are well supported when their covariance matrix

resembles the covariance matrix implied by the data.
Unfortunately ML estimates for B and W are not

available in closed form. However efficient iterative

algorithms exist for finding ML estimates, for example,
we use the factanal function in the R stats package

(version 2.13.0; R Development Core Team 2011). For

technical reasons, it is not possible to fit models with
more than p þ 1/2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ ð1=4Þ

p
axes in this way.

The maximum likelihood estimates, B̂ and Ŵ, can be

substituted into Eq. 4 to calculate the estimated model

covariance matrix, Ĉ¼ B̂B̂0 þ Ŵ. This covariance matrix
specifies the predictions that the fitted model makes

about the interrelationships between variables in the

statistical population (e.g., Fig. 1B). In Probabilistic

principal component analysis we consider an alternative
to maximum likelihood for estimating the parameters of

this model that is based on PCA, which is more familiar

to ecologists. However, we recommend maximum
likelihood and explain why in A simulation experiment.

Selecting the number of axes

We use information criteria to help make this choice.

Information criteria are suitable for use with our

predictive approach to ordination, because they are

designed to select models with good out-of-sample
predictive ability; in particular, the information criteria

we consider are estimates of a measure of out-of-sample

prediction error called expected Kullback-Leibler infor-
mation (Appendix A). To select the number of axes, we

recommend calculating an information criterion for

each of a number of factor analysis models with
different numbers of axes, and selecting the model with

the lowest criterion.

For factor analysis, the most common information

criterion (Akaike 1973; Appendix A) is given by

AIC ¼ �2Lðâ; B̂; ŴÞ þ 2P

where P is the number of free parameters. In multivar-

iate-normal models it is convenient to consider the
number, v, of parameters that determines the covariance

matrix, C, separately from the number, P � m, of

parameters that determines the unconditional mean, l.
Then we can write P ¼ m þ p because the unconditional
mean, l, equals the intercept vector, a, which contains

one intercept for each of the p variables; the problem of

finding P reduces to finding m. For factor analysis, a
naı̈ve guess at m might be pþ pd¼ p(1þ d ); p parameters

for w and one for each of the pd elements of B. However,

as is often the case with random latent variable models,
m is less than this naı̈ve guess (Grace 2006): rather m ¼
p(1þ d )� 0.5d(d� 1). The reason for the reduction by

0.5d(d � 1) is because this ordination model is over-

parameterized. In statistical jargon we would say that
0.5d(d � 1) of the parameters in B are not identifiable

and so constraints on allowable parameter combinations

are made that effectively reduces the number of free
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parameters to v¼pþ pd� 0.5d(d� 1) (Appendix A). See

Grace (2006) for a discussion on identifiability in

random latent variable models. Such a treatment is

beyond the scope of this monograph and so we only

point out that the number of free parameters in random-

effects ordination models is not always so easily

determined. For all of the models that we discuss

however, we will simply give the number of truly free

parameters, P.
AIC in general performs better in large samples. In

univariate statistics a popular modification of AIC,

called AICc, provides better estimates in small samples

(Burnham and Anderson 2002). A difficulty is that AICc

is not appropriate for correcting AIC in small multivar-

iate samples. Burnham and Anderson (2002) suggested

that

MAICc ¼ AIC þ 2
PðPþ mÞ

np� P� m
ð11Þ

be used for models with a multivariate normal

distribution of the data such as the factor analysis

model. We use M (for multivariate) in front of AICc to

distinguish it from the univariate version. Note that

MAICc ! AIC as n ! ‘ because n is in the

denominator of the correction term but not the

numerator, and so the two criteria agree in large

samples. In effect, MAICc penalizes complex models

more harshly when sample size is small.

For the purpose of evaluating whether or not any of

the candidate ordination models are appropriate, we

also compare the candidates with two other models: a

full model and a null model. In the full model, all pairs

of variables are assumed to potentially have a non-zero

correlation, whereas in the null model all variables are

assumed to be uncorrelated with each other. If the full

model is selected by the information criterion, this will

indicate that the data set contains much information on

a complex correlation structure and that the fitted

ordination models are not capable of summarizing these

patterns to the same extent as the full model. If the null

model is selected, this will indicate that there is little

information in the data about the correlations between

variables and therefore it is not appropriate to exploit

estimates of these correlations to summarize the data

with ordination axes. Further details about these models

are in Appendix A.

Estimating the ordination axes and biplots

One benefit of our probabilistic framework is that

estimation of the axis scores is conceptually straightfor-

ward. This simplicity arises because the laws of

probability tell us how to convert what we know (i.e.,

the data, yi ) into an estimate of what we do not know

(i.e., the axis scores, xi ). In particular, for any fitted

random-effects latent variable model, Bayes’ theorem

can be used to specify the conditional mean of xi, given

the observed data, yi. In the linear model, this
conditional mean is

x̂i ¼ B̂
0
Ĉ
�1ðyi � âÞ ð12Þ

and so we take this mean as our point estimate of the

axes, which is standard in factor analysis. This

procedure is analogous to estimating random effects in

an ANOVA model. The resulting estimates can be used

for the same purposes as classical ordination axes.

It is standard to overlay onto such plots information

about how the observed variables relate to the axes.

Such plots are called biplots, because they convey

information about both the observational units and

the variables. In linear models, the variables can be

visualized as arrows radiating from the origin of the

ordination space, as is common in PCA. The component

of the arrow for a particular variable along a particular

axis is given by the coefficient in B̂ relating that variable

and axis, divided by the observed standard deviation of

that variable. The length of the component of an arrow

along a particular axis indicates how much variation in

that variable is explained by the axis. The direction of an

arrow indicates whether that variable increases or

decreases along each plotted axis. The angle between

arrows tends to be smaller when variables are more

correlated.

Fitted values and predictions

The main advantage of treating axes as random

effects is that we can use our model to go beyond the

biplot, and make predictions and inferences about the

variables in the statistical population. The linear

random-effects ordination model makes three basic

types of predictions: (1) the mean and (2) variance of

each variable and (3) the covariance (and correlation)

between each pair of variables. These predictions can be

checked by plotting data against their associated 95%
prediction ellipses (e.g., Fig. 1B).

Using the established properties of the multivariate

normal distribution, we can also convert these predicted

means, variances, and correlations into regression

equations by computing the modeled probability distri-

bution of one set of variables, y1, given another set, y2
(Lawley and Maxwell 1973); these two vectors each

represent a number of variables measured at the same

observational unit. The y1 and y2 vectors play the roles

of response and predictor variables, but the symmetry of

the model allows any particular variable to play either

role. Conditional on y2, the model predicts that y1 is

distributed multivariate normally with mean vector, ŷ1,
and residual covariance, Ĉ1j2, given by

ŷ1 ¼ â1 þ B̂1B̂
0

2Ĉ
�1

2 ðy2 � â2Þ ð13Þ

Ĉ1j2 ¼ Ĉ1 � B̂1B̂
0

2Ĉ
�1

2 B̂2B̂
0

1 ð14Þ

where â1 and â2 are the elements of â corresponding to

y1 and y2; and Ĉ2 is the part of Ĉ containing variances of

and covariances between the variables in y2. When only

one response variable is considered, Eq. 14 specifies its
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predicted residual variance, ĉ1j2, which can be used to

construct a 95% prediction interval, ŷ1 6 1.96
ffiffiffiffiffiffiffi
ĉ1j2

p
; with

two or more responses, we have 95% prediction ellipses

(e.g., Fig. 1B) or hyper-ellipses. Appendix A discusses

technical advantages of Eq. 13 over ordinary least

squares regression.

LIMNOLOGY EXAMPLE

To illustrate the use of factor analysis as a random-

effects ordination model, we analyzed a limnological

data set (Jackson 1988) consisting of four morphological

(log lake area, log maximum depth, log volume, and log

shoreline length), one topographic (log elevation) and

three chemical (pH, calcium, and conductivity) mea-

surements ( p ¼ 8 variables) on 52 lakes (n ¼ 52

observational units) in the Black-Hollow watershed in

central Ontario, Canada (Supplement 1). We used our R

package, reo (for random effects ordination; Appendix

B, Supplement 2), to conduct these analyses. To

demonstrate out-of-sample prediction, we randomly

split the 52 lakes into training (n ¼ 34) and validation

(n ¼ 18) sets (’ 2:1 ratio).

We used the pcout function in the R mvoutlier

package (available online)2 to detect and remove scatter

outliers from the training data (Appendix B). Scatter

outliers are observational units that were estimated to

have been generated by processes with more variation

than the process that generated the majority of the data.

Note that more challenging data sets may also contain

location outliers, which have a different mean (or

median); such data will appear skewed or even slightly

bimodal, but it was only necessary to remove scatter

outliers in our case. We removed two outliers, which

reduced our training sample size to n ¼ 32 lakes.

Therefore, we expect that the inferences we make will

apply to approximately 94% of the lakes in the

watershed.

The three-axis model had the lowest MAICc (Fig.

2A), suggesting that the four axis and full models are

relatively overfitted and should not be used to make

inferences. Fig. 2B shows that axes I and II reflect

morphology and chemistry respectively. Axis III largely

explains correlations between morphology and chemis-

try variables (Fig. 2C and D), and explains a relatively

small fraction of variation: 13.8% compared with 40.1%
and 27.7% for the other axes (total, 81.6%; Fig. 2A

inset). Elevation only loads strongly onto axis III,

suggesting that it is implicated in correlations between

morphology and chemistry. Note that the interpretation

of inferred relationships between the variables in factor

analysis biplots essentially follows the interpretation of

PCA biplots.

To further demonstrate that factor analyses can be

interpreted in much the same way as other ordinations,

we briefly show how to use estimates of the ordination

axes (Eq. 12) to explore patterns of similarity among

lakes. For example, to explore potential spatial patterns,

we plotted the sizes of the symbols representing lakes in

proportion to their latitude (Supplement 1) with circles

and squares for training and validation lakes. In general,

northern lakes tend to be more elevated, larger, less

acidic, and calcium rich relative to southern lakes. This

pattern holds true in both the training and validation

sets. From this exploration, we might consider updating

our model to explicitly include latitude; such iterative

model building can be effective but is beyond our scope.

The biplots also suggest that the validation lakes are

representative of the total sample of lakes; predictions

about the validation data are thus better described as

interpolative rather than extrapolative.

Before considering out-of-sample predictions, we look

at the fit of the model to the training data. The simplest

such fits are the pair-wise regressions of one observed

variable on another (Fig. 3). Note that these regressions

are a direct prediction of our symmetric model, and not

asymmetric least-squares fits. Therefore, because of

symmetry, each variable plays the role of both predictor

(x-axes) and response (y-axes). The two thin lines in

each subplot define 95% prediction intervals. If the

model assumptions are being met we would expect that

between only one or two points will fall outside of each

plot on average, which is approximately true. Such a

good fit indicates that the biplots provide a good

summary of the training data.

The most important benefit of random-effects ordi-

nations is their ability to make out-of-sample predic-

tions. To demonstrate, we predicted each variable given

all other variables (Eqs. 13 and 14) in the validation

sample (Fig. 4). With a validation set of 18 lakes, we

expect approximately one lake to fall outside of the 95%
prediction intervals. Given that we removed approxi-

mately 5% of the training data as outliers, we might

expect approximately two lakes to fall outside of the

intervals assuming that the proportion of outliers is

similar in both the training and validation sets.

Although most variables fit the model very well, pH is

an exception as six validation lakes fall outside of the

prediction intervals for pH. One lake has much higher

elevation than predicted by the model, but the two

outlying training lakes prepared us for the possibility of

outlying validation lakes. The letters in Fig. 4 show the

predictions for these training set outliers. Not surpris-

ingly the model does not fit these data well. Such

graphical assessments of out-of-sample predictions

clarify the extent to which inferences (e.g., correlations

between pH and the other variables) can be extended to

the statistical population.

PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

We used the method of maximum likelihood factor

analysis to fit the linear random-effects ordination

model. We used this method because it has become a

standard, outside of ecology, for estimating such

models. However, in ecology principal component2 hhttp://CRAN.R-project.org/package¼mvoutlieri
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analysis (PCA) is currently the standard approach for

the ordination of linear data within a fixed-effects

perspective. Therefore, we evaluate the ability of PCA

at estimating the parameters of the linear random-effects

ordination model; we conclude that factor analysis is

more appropriate from a random-effects perspective.

Although PCA was originally devised as a purely

geometric procedure (Pearson 1901), it has subsequently

been given various interpretations as a model estimation

technique (e.g., ter Braak 1987). Working in the field of

machine learning, Tipping and Bishop (1999) showed

that it can be used to estimate the parameters of the

linear random-effects model described above. They

referred to their approach as probabilistic principal

component analysis (PPCA).

The main assumption of PPCA is that all of the

residual variances are identical:

w1 ¼ . . . ¼ wp ¼ w: ð15Þ

Under this simplifying assumption, it turns out that the

log-likelihood function (Eq. 5) is maximized at values of

B and w that depend only on an eigen-analysis of the

sample covariance matrix, Ŝ (Tipping and Bishop 1999):

ŵ ¼ 1

p� d

Xp

j¼dþ1

kj

B̂ ¼ UdðKd � ŵIÞ1=2 ð16Þ

where kj is the jth eigenvalue of Ŝ, Ud is a matrix whose

FIG. 2. (A) Model selection and B–D biplots for the limnology data. The inset in panel (A) shows the percentage of variance
explained by the axes. Circles and squares in panels (B)–(D) are axis scores for training and validation lakes; shape size is
proportional to latitude. Gray arrows (upper horizontal and right-hand vertical axes) give standardized coefficients relating each
observed variable to the ordination axes. MAICc is the multivariate Akaike information criterion adjusted for small sample sizes.
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columns are the first d eigenvectors of Ŝ and Kd ¼
diag(k1, . . . , kd). These estimates are based on the same

eigen-analysis as used in regular PCA. The difference is

that in probabilistic PCA, these estimates lead to a

random-effects model that can be used to make

inferences beyond the specific sample of observational

units (Tipping and Bishop 1999).

We do not expect PPCA to be applicable to ecological

and environmental data. It is well-known that eigen-

analyses of covariance matrices are unlikely to lead to

good ordinations, especially when variables are on

different measurement scales as with the Black-Hollow

environmental variables (Legendre and Legendre 1998).

PPCA is based on the covariance matrix (Eq. 16),

suggesting that PPCA will typically not be appropriate

for environmental data. Our random-effects approach

sheds light on why covariance matrix PCA is not

appropriate. The problem stems from the critical

assumption that all variables have an identical residual

variance (Eq. 15). This is an extremely poor assumption

given that many of the variables were measured on

completely different measurement scales. Hence the

observed variances of the variables differed widely and

as a result it is unreasonable to assume equal residual

variances, as PPCA does.

Correlation matrix PPCA

While factor analysis is able to avoid the issue of

different measurement scales, ecologists have tended to

prefer another solution. The usual approach to this issue

has been to standardize the data prior to analysis by

subtracting the mean and dividing by the standard

deviation of each variable, resulting in z scores

(Legendre and Legendre 1998). This standardized

analysis is known as correlation matrix PCA. Following

the standardization, all variables are measured in units

of standard deviations. Correlation matrix PCA solves

FIG. 3. Pairwise fit of the three-axis model to the training limnology data. Thick lines are model-fitted conditional means of the
y-axis variable given the x-axis variable. Thin lines give 95% prediction intervals. Axis labels are listed on the diagonal: area, log
lake area (ha); maxd, log maximum depth (m); vol, log lake volume (104 m3); shore, log shoreline length (km); elev, log elevation
(m); pH; ca, log calcium concentration (mg/L); cond, log conductivity (lmhos/cm).
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the problem of differences in the measurement scale by

putting all variables on the same scale.

There are potentially numerous ways that correlation

matrix PCA can be used to estimate the B and w
parameters of the linear random-effects ordination

model. To bound the scope of this monograph we will

consider only one such estimate that is based on a

modification of PPCA, which we refer to as correlation

matrix PPCA (PPCAcor). Hence the conclusions that

we draw about PPCAcor do not necessarily apply

generally to all uses of correlation matrix PCA; however,

in A simulation experiment: PPCAcor in large samples

we develop theory to explore how general these

conclusions might be.

The PPCAcor estimates of B and w are

ŵ ¼ 1

p� d

Xp

j¼dþ1

kj

 !
diagðDD 0Þ

B̂ ¼ DUdðKd � ŵIÞ1=2 ð17Þ

where kj is the jth eigenvalue of the sample correlation

matrix of Y, Ud is a matrix whose columns are the first d

eigenvectors of the sample correlation matrix of Y, Kd¼
diag(k1, . . . , kd) and D is a p-by-p diagonal matrix with

the sample standard deviations of the p variables on the

diagonal. Note that Eq. 17 does not give maximum

likelihood estimates and therefore AIC or MAICc

should not be used to estimate expected Kullback-

Leibler information; instead, we therefore use a cross-

validation information criterion (CVIC), which is

described in Appendix A.

The critical assumption behind PPCAcor is that all

variables leave the same proportion of variance unex-

plained. So while PPCAcor relaxes the assumption of

equal residual variances, as in PPCA, it still assumes

proportional equivalence, which is not reasonable given

the estimates of proportional residual variances obtained

FIG. 4. Out-of-sample predictions of the validation limnology data (open circles) and outlying lakes (gray letters) removed from
the training data, using the three-axis ordination model. Predictions for each variable are conditional on all other variables. Thick
lines give conditional mean, and thin lines give 95% prediction intervals. Variables are as in Fig. 3.
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by factor analysis: area, 0.088; maximum depth, 0.316;

volume, 0.005; shoreline length, 0.161; elevation, 0.418;

pH, 0.124; calcium, 0.045; conductivity, 0.317. As a result,

PPCAcor only partially solves the problem of different

measurement scales as we will see in the next section.

A SIMULATION EXPERIMENT

We replicate a simulation experiment of Peres-Neto et

al. (2005) to compare factor analysis with PPCAcor, in

terms of the number of axes selected by information

criteria. We used Peres-Neto et al.’s (2005) 36 multivar-

iate-normal simulation models. Half of these models

contained p ¼ 9 variables and half contained p ¼ 18. All

variables have mean zero and variance one. The models

differ in their correlation matrices (Figs. 5); the 18-

variable matrices are exactly the same as the nine-variable

matrices, but with two copies of each variable. For each

nine- and 18-variable matrix, we simulated 1000 data sets

with n¼50 or n¼100 observations each, respectively. We

fitted PPCAcor (d ¼ 1, . . . , p � 2), factor analysis (d ¼
1, . . . , 5 when p¼ 9 and d¼ 1, . . . , 12 when p¼ 18), null

and full models to each simulated data set. CVIC was

calculated for each fitted PPCAcor model whereas both

AIC and MAICc were calculated for each factor analysis

(see Appendix A for a discussion of the differences

between these criteria). All three information criteria were

calculated for each null and full model. In total 1 242 000

information criteria were calculated.

This experiment has been used several times (Jackson

1993, Peres-Neto et al. 2005, Dray 2008) to evaluate

procedures that select the number of axes, and so it

provides a useful benchmark. However, previous inter-

pretations of the results of these experiments have been

somewhat incongruent with recent thinking in statistical

ecology from the perspective of information criteria

(e.g., Burnham and Anderson 2002). For this reason, we

will now briefly address some philosophical issues

relating to these kinds of experiments.

Two targets for axis selection methods

A reoccurring theme in recent statistical thought is

that studies in model selection should explicitly

acknowledge the fact that all models are wrong (e.g.,

Burnham and Anderson 2002); although models can be

useful, the concept of a ‘‘true’’ model is unrealistic

because nature is more complex than any model. These

arguments question the relevance of using simulation

studies to evaluate model selection procedures based on

their propensity for identifying the known simulation

model, because such simulation models are at best an

imperfect approximation to nature. As an alternative,

model selection procedures may be evaluated based on

their out-of-sample prediction error, as measured by

expected Kullback-Leibler information and its estima-

tors (e.g., AIC, CVIC; see Appendix A). It has been

argued that this alternative is more relevant to the

analysis of real data, because making good predictions is

possible while identifying the true model is not.

A corresponding counter-theme is that, although it is

true that all models are wrong, sometimes nature may be

very simple, or at least well approximated by a very

simple model, and in these circumstances we would like

model selection procedures to lead us to such simple

models (Taper 2004). Furthermore, by using probabi-

listic models, we implicitly account for the complex

details of nature using stochastic fluctuations (Taper

2004). Indeed, most published assessments of ordination

selection methods seem to use the concept of a true

ordination (Jackson 1993, Peres-Neto et al. 2005, Dray

2008). These studies assess methods for choosing the

number of principal components, also called the true

dimensionality, by analyzing simulated samples from

multivariate distributions with simple structure. The

criteria are judged based on the likelihood that the

selected number of components is equal to the true

dimensionality.

Because these philosophical issues are far from

resolved (e.g., Taper 2004), we assess the ability of our

information criterion approach to both identify the

model with (1) the true number of axes (i.e., the ‘‘true’’

model) and (2) the lowest Kullback-Leibler prediction

error (i.e., the KL-best model). Still, it is important to

keep in mind that the ability to select the ‘true’ number

of axes is not the primary goal of the information

criterion approach. Expected Kullback-Leibler informa-

tion (i.e., prediction error) was calculated for each

model as the simulation average Kullback-Leibler

information, using the formula of Bedrick and Tsai

(1994) for multivariate-normal models, over 500 simu-

lated data sets. Determining the true number of axes

requires a consideration of the conspicuous block

structure of Peres-Neto et al.’s (2005) matrices. We use

the number, g¼ g0 þ t, of variable groups to distinguish

different types of group structure; the two components,

g0 and t, represent two different types of groups. The

number of groups composed of more than one variable,

such that all within-group correlations are greater than

zero, is denoted by g0. The number of variables that are

uncorrelated with all other variables is denoted by t. For
example, the nine-variable matrix 1 has g0 ¼ 3 and t¼ 0

whereas the nine-variable matrix 11 has g0 ¼ 2 and t¼ 3

(Fig. 5). Each of the g0 groups exhibiting non-zero

within-group correlations should require one single axis

to summarize its covariance, because all variables in the

group are correlated in exactly the same way to all other

variables in the group. The t uncorrelated variables

should not be summarized by any axis, because axes

should summarize covariation only. Hence the true

number of axes is g0, not g.

PPCAcor in large samples

We present some theory on the behavior of PPCAcor

in large samples because it provides insight into when

PPCAcor might be appropriate and it generates

predictions for the simulation experiment. Matrices 1,

4, 6, 7, and 9–18 can all be considered special cases of a
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general type of correlation matrix. In such matrices, all

pairs of variables between groups have correlation zero.

Let the within-group correlation in group m be rm and

the number of variables in group m be pm, so by

definition,

p ¼
Xg

m¼1

pm:

Substantial insight into how PPCAcor works on such

matrices can be obtained by letting sample size approach

infinity: n ! ‘. In such circumstances the sample

correlation matrix will equal the true correlation matrix.

Carrying out a PPCAcor on the true correlation matrix

will therefore characterize the behavior of the method

when sample sizes are large.

We now describe a simple equation (Appendix A) for

establishing when a g0-axis PPCAcor model will separate

covariance from residual variance in large samples. In

the infinite sample limit, the g0-axis PPCAcor estimate of

the within-group covariance is

r̂m ¼ rm 1� 1

pm

� �
þ r̄

1

pm

� �
ð18Þ

where

r̄ ¼ 1

p� g

Xg

m¼1

ðpm � 1Þrm ð19Þ

FIG. 5. Peres-Neto et al.’s (2005) nine-variable correlation matrices. The small squares in each matrix represent the correlation
(indicated by shading) between two variables. The 18-variable matrices are identical to the nine-variable matrices, but with two
copies of each variable.
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is a weighted average of the within-group correlations.

Because all of the variables have variance one, the true

covariances are identical to the true correlations.

Therefore if g0 axes summarize all of the covariance,

then the estimated covariance, r̂m, should equal the true

correlation, rm, in every group. Setting r̂m¼ rm in Eq. 18

we see that this condition is met whenever rm ¼ r̄ for

every group, which can only be true if the within-group

correlations are identical in all groups

r1 ¼ . . . ¼ rg: ð20Þ

Based on this result, we conclude that PPCAcor is

appropriate for matrices 1–6 and 15–18, because these

matrices have identical within-group correlations for all

g 0 groups. On the other hand, matrices 7–14 are

expected to require more than g0 axes to summarize all

of the covariance.

Eq. 18 provides further insight. If the number of

variables in each group is large, then r̂m ’ rm. Hence we

expect the 18-variable matrices to be less influenced by

differences in within-group correlations compared with

the nine-variable matrices. However, as sample size gets

truly large, there may be enough information to detect

small differences between r̂m and rm. Therefore, large

numbers of variables are expected to mitigate, but not

eliminate, the problems with PPCAcor.

These results have implications for the analysis of real

ecological study systems. Even if the correlations

between real variables are approximately clustered into

groups, these groups will differ somewhat in their

within-group correlations. Therefore, these results sug-

gest that PPCAcor may not be appropriate for the

ordination of real ecological data because it will almost

always summarize both covariation and residual varia-

tion on at least some axes.

Finally, these conclusions are not restricted to the

particular use of the correlation matrix eigen-analysis

that characterizes PPCAcor. For example, Johnson and

Wichern (1992) describe another use of this eigen-

analysis for which the analogue of Eq. 18 is (Appendix

A),

r̂m ¼ rm 1� 1

pm

� �
þ 1

pm

� �
: ð21Þ

Following the same logic as with Eq. 18, the

conclusion here is that g0 axes will adequately summa-

rize covariance if the within-group correlations are

perfect for every group (i.e., r1 ¼ . . .¼ rg ¼ 1); this is

an unreasonable condition for real ecological data.

Therefore, despite the problems with PPCAcor, it will

likely be more appropriate than the method described by

Johnson and Wichern (1992).

Simulation study expectations and results

Bias for expected Kullback-Leibler information.—

Information criteria are constructed to estimate expect-

ed Kullback-Leibler information (i.e., prediction error)

with minimal bias. We explored bias by plotting the

simulation average information criteria against the

expected Kullback-Leibler information for various

models. Bias is approximately zero when there is no

difference between the average information criterion and

expected Kullback-Leibler information. CVIC will

almost certainly be a nearly unbiased estimate of

expected Kullback-Leibler information (see Appendix

A for a justification). We therefore checked four

simulation models to confirm that the bias is indeed

negligible. It is possible that AIC will be badly biased

with factor analysis estimation. We know of no theory

for predicting whether the sample sizes used in this study

are sufficiently large to reduce this bias. There is also no

theory underlying Burnham and Anderson’s (2002)

conjecture that MAICc (Eq. 11) will reduce bias relative

to the AIC case. To our knowledge, the present study

provides the first evaluation of this conjecture; to

address this research gap we evaluated the bias of AIC

and MAICc for all factor analysis models.

As expected, CVIC is essentially an unbiased estimate

of expected Kullback-Leibler information (Fig. 6 gives

four examples of this lack of bias). However, AIC was

noticeably biased for the factor analysis models consid-

ered (Fig. 7). As hypothesized by Burnham and

Anderson (2002), MAICc reduced this bias in every

case but did not eliminate it (Fig. 7). For some simula-

tion models (such as nine-variable matrix 18) MAICc

actually overcompensated for the bias in AIC such that

the absolute value of the bias was relatively similar

between the two criteria, but just in different directions.

However MAICc very rarely resulted in a worse absolute

bias, suggesting that MAICc should be recommended

over AIC for factor-analysis model selection. Accord-

ingly, we will not present any more AIC results.

Comparing the true and KL-best models.—In the

general literature on information criteria, the KL-best

model is typically less complex than the true model (e.g.,

Burnham and Anderson 2002). This tendency results

because less complex models often produce better

predictions when the sample size is too small to reliably

estimate the parameters of more complex models. We

apply this logic to ordination selection, but add a few

caveats.

The number of axes of the KL-best factor analysis

model should tend to be less than or equal to the true

number, g0, of axes, especially for simulations with low

within-group correlations; groups with low correlations

have little covariance to be explained by ordination axes.

By the same logic, we also expect this tendency for

PPCAcor with matrices 1–6 and 15–18. However, as

explained in PPCAcor in large samples, matrices 7–14

are expected to require more than the true number of

axes. In these cases, it will therefore not be surprising if

the KL-best PPCAcor model has more than g0 axes.

There were very few cases of disagreement between

the KL-best and true models (Tables 1, 2, 3, 4), and so

we only highlight these few exceptions. As predicted,
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the three exceptions for factor analysis (Table 1,

matrices 6–8) had low within-group correlations and

the KL-best had fewer axes than the true model. A

similar pattern was observed for PPCAcor with the nine-

variable matrix 6 (Table 2). The only other PPCAcor

disagreement involved a KL-best model that was more

complex than the true model (Table 2, matrix 8); in

agreement with theory (PPCAcor in large samples), the

within-group correlations of this matrix differed be-

tween groups.

Model-selection frequencies.—Because information

criteria are meant to estimate expected Kullback-Leibler

information, the most frequently selected model will

typically be the KL-best model; but this need not be the

case in all scenarios. For example, if the information

criterion is badly biased, the most frequently selected

model will differ from the KL-best model. Such

differences are more likely to occur with factor analysis

estimation because AIC and MAICc are much more

likely than CVIC to be biased. Bias is more likely to

cause disagreement between the KL-best and most

frequently selected models when all models have similar

expected Kullback-Leibler information.

The simple structure of the Peres-Neto simulation

models ensures that samples from the same model will

tend to show very similar patterns. Hence a good model-

selection procedure should choose the same (or similar)

model(s) in repeated samples. Otherwise, the procedure

would be capable of representing similar structure in a

variety of ways, which makes for interpretation difficul-

ties. Ideally a model-selection procedure will choose the

same model with high probability. However it is also

acceptable if a procedure selects one of two adjacent

models with high probability. Two models are defined as

adjacent if they have d and dþ1 axes. In contrast, model

selection variability over models with very different

numbers of axes indicates that very different candidate

ordinations have similar capabilities for summarizing

the patterns generated by the simulation model. Such

variation suggests that the list of candidates is too long.

We predicted that PPCAcor model selection would be

more variable for matrices 7–14 (see PPCAcor in large

samples). Factor analysis estimation should lead to

FIG. 6. Correlation matrix probabilistic principal component analysis: expected Kullback-Leibler information and average
cross-validation information criterion (CVIC) for four of the matrices of Peres-Neto et al. (2005). Numbers of axes for each
ordination model are on the x-axes.

November 2011 649RANDOM-EFFECTS ORDINATION



much less of this variation because it is more efficiently

able to summarize residual variation without axes.

As predicted, the most frequently selected model was

almost always the KL-best model, with only four

exceptions (Tables 1, 2, 3, 4). Also as predicted, all of

those exceptions were for factor analysis (Table 1;

matrices 5, 6, 9, and 11). The reason for these four

exceptions may relate to the fact that the expected

Kullback-Leibler information for these matrices was

very similar for more than one model (Fig. 7), thereby

exaggerating the effects of a small bias in MAICc. For

every 18-variable simulation matrix, the most frequently

selected model was the KL-best model for both

estimation procedures. The factor analysis procedure

selected one single (or two adjacent) model(s) with

greater than 80% frequency for all matrices (Tables 1

and 3). PPCAcor had similarly small variability to factor

analysis for matrices 1–6 and 15–18, but was highly

variable for the remaining matrices as predicted.

Overall, factor analysis with MAICc provided more

reliable model selection than PPCAcor.

LOGISTIC RANDOM-EFFECTS ORDINATION

BY LATENT TRAITS

A very common type of data in ecology for which

transformation to normality is not possible are pres-

ence–absence data, where the presence or absence of p

species (i.e., variables) is recorded as either a one or zero

respectively at each of n sites (i.e., observational units).

In univariate contexts, such presence-absence data are

commonly handled by logistic regression. Here we show

that a logistic random-effects ordination model is also

available for presence-absence data. Our logistic ordi-

nation model would be called a latent trait model (e.g.,

Rizopoulos 2006) in the psychometric field of item

response theory (e.g., Lord 1986). Our latent trait model

is closely related to ter Braak’s Gaussian-logit model

(see also Yee 2004), the major difference being whether

FIG. 7. Factor analysis of expected Kullback-Leibler information (solid), average AIC (dashed), and average MAICc (dotted)
for all of the matrices of Peres-Neto et al. (2005) (number of variables in parentheses). Numbers of axes for each ordination model
are on the x-axes.
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axes are treated as random or fixed (ter Braak 1985:866–

867).

Assumptions

The major difference between linear and logistic

random-effects ordination is that the linear model (Eq.

2) relating axes and variables is replaced by a logistic

model:

logitðŷijÞ ¼ aj þ
Xd

k¼1

bjkxik: ð22Þ

The probabilities of occurrence, ŷij, in this model are

determined by a monotonic S-shaped function of the

latent variables. However, often with real ecological

data we would like our ordination axes to reflect

variation in environmental gradients; for example,

physiological stress models often predict that species

will take their maximum probability of occurrence at

intermediate sites along such gradients (e.g., ter Braak

and Prentice 1988). Yet the above logistic ordination

model predicts maximum probabilities of occurrence at

extreme, not intermediate, sites. ter Braak (1985)

introduced the Gaussian-logit model, which showed

that it is possible to relax this assumption of monoto-

nicity by modeling the probabilities of occurrence as

TABLE 1. Factor analysis model-selection percentages using multivariate Akaike information criterion adjusted for small sample
sizes (MAICc) for the nine variable simulations.

Matrix KL g0

Number of axes

Null 1 2 3 4 5 Full

1 3 3 0.0 0.0 0.0 98.0 1.9 0.0 0.1
2 3 3 0.0 0.0 0.3 97.8 1.8 0.0 0.1
3 3 3 0.0 0.0 3.4 95.1 1.5 0.0 0.0
4 3 3 0.0 1.3 44.9 52.9 0.9 0.0 0.0
5 3 3 0.0 6.5 57.0 36.1 0.4 0.0 0.0
6 2 3 7.3 48.9 38.8 5.0 0.0 0.0 0.0
7 2 3 0.0 2.5 84.5 13.0 0.0 0.0 0.0
8 2 3 0.0 2.5 86.0 11.5 0.0 0.0 0.0
9 3 3 0.0 1.3 51.8 46.6 0.3 0.0 0.0
10 2 2 0.0 1.9 95.6 2.5 0.0 0.0 0.0
11 2 2 0.6 51.7 46.5 1.2 0.0 0.0 0.0
12 1 1 0.0 94.6 5.3 0.1 0.0 0.0 0.0
13 1 1 2.2 93.4 4.4 0.0 0.0 0.0 0.0
14 1 1 47.5 50.3 2.2 0.0 0.0 0.0 0.0
15 1 1 0.0 95.2 4.8 0.0 0.0 0.0 0.0
16 1 1 0.0 94.6 5.3 0.1 0.0 0.0 0.0
17 1 1 0.0 96.1 3.8 0.1 0.0 0.0 0.0
18 0 0 92.6 7.3 0.1 0.0 0.0 0.0 0.0

Notes: KL identifies the number of axes associated with the Kullback-Leibler-best model; g0 is the true number of axes. Boldface
numbers indicate the model with the highest selection percentage.

TABLE 2. Correlation matrix probabilistic principal component analysis (PPCAcor) cross-validation information criterion (CVIC)
model-selection percentages for the nine variable simulations.

Matrix KL g0

Number of axes

Null 1 2 3 4 5 6 7 Full

1 3 3 0.0 0.0 0.0 91.9 7.1 0.9 0.1 0.0 0.0
2 3 3 0.0 0.0 0.0 92.1 6.5 1.3 0.1 0.0 0.0
3 3 3 0.0 0.0 0.1 92.9 6.4 0.4 0.1 0.0 0.1
4 3 3 0.0 0.2 7.5 87.5 4.4 0.3 0.1 0.0 0.0
5 3 3 0.0 4.0 26.7 64.2 4.3 0.7 0.1 0.0 0.0
6 2 3 4.5 22.4 38.5 31.6 2.6 0.4 0.0 0.0 0.0
7 3 3 0.0 0.0 10.5 33.1 15.5 7.6 29.5 3.2 0.6
8 6 3 0.0 0.0 12.2 27.1 14.5 10.5 33.1 2.4 0.2
9 3 3 0.0 0.0 3.6 57.5 8.6 6.4 4.5 17.6 1.8
10 2 2 0.0 0.1 37.8 9.5 4.7 11.8 7.8 25.7 2.6
11 2 2 2.5 27.0 54.2 12.9 2.9 0.4 0.0 0.1 0.0
12 1 1 0.0 43.9 11.6 2.2 0.6 0.3 1.1 37.5 2.8
13 1 1 3.7 78.2 14.7 2.8 0.4 0.2 0.0 0.0 0.0
14 1 1 40.9 48.7 8.4 1.9 0.1 0.0 0.0 0.0 0.0
15 1 1 0.0 94.2 5.4 0.4 0.0 0.0 0.0 0.0 0.0
16 1 1 0.0 95.0 4.3 0.5 0.2 0.0 0.0 0.0 0.0
17 1 1 0.0 94.1 4.8 0.9 0.2 0.0 0.0 0.0 0.0
18 0 0 87.1 10.4 2.1 0.3 0.0 0.1 0.0 0.0 0.0

Note: Boldface numbers indicate the model with the highest selection percentage.
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unimodal functions of the latent independent variables

logitðŷijÞ ¼ aj þ
Xd

k¼1

bjkxik þ cjkx2
ik ð23Þ

where the c coefficients are constrained to be negative,

which ensures unimodal relationships rather than valley-

shaped relationships.

As in logistic regression, each yij is assumed to have a

Bernoulli distribution with probability of occurrence, ŷij.
There is no need to specify a parameter for residual

variation, as was required for normal ordination models,

because ŷij determines both the mean and variance of the

Bernoulli distribution. Because the axes are treated as

random effects, we need to specify a distribution for

them as well. As in our multivariate-normal model, we

assume that each axis score has a standard normal

distribution.

Estimation and model selection

These logistic random-effects ordination models can

be fitted by maximum likelihood using the ltm function

in the R ltm package (Rizopoulos 2006), provided that

the number of axes does not exceed d¼ 2. This function

uses an iterative procedure that improves parameter

estimates at each iteration. However, for ecologically

relevant unimodal models in particular, we found that

the algorithm was not very stable (Appendix B). It

frequently converges to coefficient estimates of positive

and negative infinity, implying unrealistically strong

associations between species that cross-validate very

TABLE 3. Factor analysis model-selection percentages using MAICc for the 18-variable simulations.

Matrix KL g0

Number of axes

Null 1 2 3 4 5 .6 Full

1 3 3 0.0 0.0 0.0 96.0 3.9 0.1 0.0 0.0
2 3 3 0.0 0.0 0.0 96.4 3.4 0.2 0.0 0.0
3 3 3 0.0 0.0 0.0 95.5 4.5 0.0 0.0 0.0
4 3 3 0.0 0.0 0.0 95.7 4.2 0.1 0.0 0.0
5 3 3 0.0 0.0 0.1 96.3 3.5 0.1 0.0 0.0
6 3 3 0.0 0.0 7.0 89.3 3.5 0.2 0.0 0.0
7 3 3 0.0 0.0 6.0 90.8 3.0 0.2 0.0 0.0
8 3 3 0.0 0.0 9.8 86.4 3.8 0.0 0.0 0.0
9 3 3 0.0 0.0 0.0 96.5 3.4 0.1 0.0 0.0
10 2 2 0.0 0.0 95.9 4.0 0.1 0.0 0.0 0.0
11 2 2 0.0 0.0 94.9 5.1 0.0 0.0 0.0 0.0
12 1 1 0.0 94.1 5.5 0.4 0.0 0.0 0.0 0.0
13 1 1 0.0 95.6 4.4 0.0 0.0 0.0 0.0 0.0
14 1 1 0.1 94.3 5.4 0.2 0.0 0.0 0.0 0.0
15 1 1 0.0 94.2 5.5 0.3 0.0 0.0 0.0 0.0
16 1 1 0.0 94.4 5.6 0.0 0.0 0.0 0.0 0.0
17 1 1 0.0 95.3 4.5 0.2 0.0 0.0 0.0 0.0
18 0 0 92.8 6.8 0.4 0.0 0.0 0.0 0.0 0.0

Note: Boldface numbers indicate the model with the highest selection percentage.

TABLE 4. PPCAcor CVIC model-selection percentages for the 18-variable simulations.

Matrix KL g0

Number of axes

Null 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Full

1 3 3 0.0 0.0 0.0 96.8 2.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3 3 0.0 0.0 0.0 97.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 3 3 0.0 0.0 0.0 97.4 2.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 3 3 0.0 0.0 0.0 97.9 1.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 3 3 0.0 0.0 0.0 97.9 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 3 3 0.0 0.0 1.4 94.4 3.9 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 3 3 0.0 0.0 0.3 69.2 3.8 2.5 1.6 0.4 0.1 0.5 1.6 17.8 2.0 0.2 0.0 0.0 0.0 0.0
8 3 3 0.0 0.0 0.6 69.2 4.0 1.4 1.2 0.6 0.3 0.6 1.5 18.6 1.8 0.2 0.0 0.0 0.0 0.0
9 3 3 0.0 0.0 0.0 91.5 3.8 0.5 0.1 0.0 0.2 0.1 0.0 0.0 0.2 3.2 0.4 0.0 0.0 0.0
10 2 2 0.0 0.0 74.7 6.8 0.9 0.2 0.1 0.6 1.5 0.1 0.2 0.5 1.8 11.5 0.6 0.5 0.0 0.0
11 2 2 0.0 0.0 95.1 4.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 1 1 0.0 47.7 6.2 1.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.3 2.9 0.0 0.1 0.0
13 1 1 0.0 93.9 5.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 1 1 0.1 94.5 4.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 1 1 0.0 96.9 3.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 1 1 0.0 98.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 1 1 0.0 97.7 2.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 0 0 94.4 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: Boldface numbers indicate the model with the highest selection percentage.
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poorly; infinite coefficients lead to fitted probabilities of

co-occurrence of zero or one, which implies far too

much certainty to be a good model of ecological data.

Furthermore, runs from different random initial values

would often lead to vastly different estimates. These

numerical difficulties are not entirely surprising, as

similar experiences with ter Braak’s Gaussian-logit

model motivated statistical ecologists to recommend

using eigen-analyses such as correspondence analysis to

approximate model-based fits (Gauch 1982, ter Braak

1985). Another difficulty with the ltm function is that it

does not constrain quadratic coefficients to be negative,

allowing valley-shapes instead of unimodal relationships

between species and the axes. In an effort to address

these issues, we developed a procedure that is more

stable and ensures unimodal or S-shaped relationships

(Appendix A). We developed an R function that

implements our fitting procedure for d ¼ 2 axes, which

is based on the same iterative principles as ltm but is

tailored to better suit ecological data.

The increased stability of our algorithm arises from

two additions to the algorithm in ltm. First, we choose

initial values for the parameters using the first two axes

of correspondence analysis (Appendix A for details).

Other geometric ordination procedures can be used to

provide initial values, but we chose correspondence

analysis because ter Braak (1985) showed that it

provides an approximate maximum likelihood solution

to a fixed-effects version of this model. Second, we

shrank the absolute values of coefficients towards zero

at each iteration and set near-zero coefficients to exactly

zero, thereby preventing parameter estimates from

becoming infinite. We used the LASSO (least absolute

shrinkage and selection operator) method of coefficient

shrinkage for this purpose (Tibshirani 1996), which has

been successfully used to prevent unrealistically large

coefficients in a wide variety of applications (e.g.,

Dahlgren 2010). The LASSO method requires the

specification of an additional parameter, k, called a

regularization parameter, which specifies the degree to

which coefficients are shrunk towards zero. Larger

values of k cause more shrinkage, which leads to more

coefficients being set to exactly zero and therefore to less

complex models. We used CVIC to select a value of

lambda that balances goodness-of-fit and parsimony.

Our procedure has several advantages over existing

methods for interpreting ordinations of presence–ab-

sence data. In classical ecological fixed-effects ordina-

tion, there are generally two types of models: linear (e.g.,

PCA) and unimodal (e.g., correspondence analysis; e.g.,

ter Braak and Prentice 1988). However, natural func-

tional diversity makes it likely that some species will

respond linearly (or S-shaped) while others will be

unimodal. Therefore this dichotomy between models in

which all species are S-shaped or all are unimodal, will

often fail to reflect natural among-species variation.

With our procedure, some species can be inferred to be

S-shaped, some as unimodal, and others as a combina-

tion of both types; as the LASSO sets some coefficients

to exactly zero, some species will have no quadratic

terms and therefore be S-shaped. Similarly, the LASSO

may set all axis I coefficients to zero but retain non-zero

axis II coefficients. Therefore, some species may be

related to only one axis or the other, which is an

advantage over classical procedures that will include all

species in all axes even if the variation being summarized

is largely noise.

Our LASSO-based procedure also has advantages

over more recent fixed-effects ordination models (e.g.,

Yee 2004). As with our procedure, coefficients can be set

to zero in these models. However, the decision to set

certain parameters to zero must be made by the analyst

using prior information. In contrast, our procedure

allows the data to select which coefficients will be set to

zero. Furthermore, if relevant prior information exists,

our procedure can be modified to allow researchers to

directly set certain coefficients to zero; this possibility is

not explored here as we focus on exploratory analysis.

Estimating the axes and biplots

The estimate, x̂i, of the axes at the ith observational

unit is given by the conditional mean of xi, given the

observed data, yi. This approach is identical in principle

to the estimates used for the linear model (Eq. 12, Linear

random-effects ordination by factor analysis). However,

unlike the linear case, there is no simple expression for

these means (it involves integrals)—our R function

computes them numerically (Appendices A and B,

Supplement 2). We used arrows to represent variables

in linear model biplots, as is common in PCA (e.g., ter

Braak and Prentice 1988). In classical unimodal models,

the variables are represented as points (e.g., correspon-

dence analysis), such that observational units with

ordination scores that are near to particular variables

can be interpreted as tending to have higher values of

these variables. As our procedure estimates some species

to be S-shaped and others to be unimodal, we need a

different way to plot species information on biplots that

will allow us to visualize this additional structure.

Many different possibilities are conceivable for this

purpose, but we suggest using contour lines that connect

points in the ordination space for which the probability

of occurrence is 1/2. We illustrate four broad types of

species responses that can be estimated using our

framework (Fig. 8A); the points represent fictitious

observational units. Species 1 is monotonic along both

axes; on one side of the line the probability of

occurrence is greater than 1/2 and on the other it is

less than 1/2. The arrow points in the direction of

increasing probabilities of occurrence. Species two is

unimodal along both axes; inside (outside) the ellipse

probabilities of occurrence are greater (less) than 1/2.

Species 3 is monotonic along axis one but unimodal

along axis two; on the inside (outside) of the parabola

probabilities of occurrence are greater (less) than 1/2.

Finally species 4 is unimodal along axis one but
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completely unrelated to axis two, requiring two lines to

represent it; the arrows associated with it indicate that

probabilities of occurrence between (outside of ) the lines

are greater (less) than 1/2.

Fitted probabilities of occurrence and predictions

In the linear case, we explored such predictions

through regression equations describing relationships

between observed variables that are predicted by the

ordination model. With presence–absence data, we

cannot construct regression equations per se. Instead,

we calculate probabilities of occurrence for one species

that are conditional on the presence or absence of other

species, and then check these conditional probabilities

against observed data (see Appendix A for details). For

example, our fitted latent trait models can be used to

predict the probability of observing species A at a

particular observational unit, given that species B, C, and

FIG. 8. (A) Cartoon example biplot, (B) CVIC model selection (dotted vertical line at best model) with zoomed-in inset to show
details, and (C–F) biplots from the selected latent trait model fitted to the fish community data. Circles and squares in panels C–F
are axis scores for training and validation lakes; shape size is proportional to latitude. Thick lines are contours for 50% probabilities
of occurrence for each species. Missing species did not have probabilities greater than 50% anywhere on the ordination space.
Arrows indicate direction of increasing probability.
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D were observed but E, F, and G were not. If the

ordination model is working well, we should expect to see

higher probabilities associated with observational units

at which species A was actually present than at units at

which it was absent. We can also compute the probability

that species A and B will co-occur, given that species C

and D were observed but not E and F. In general, we can

compute the probability of observing any particular

presence-absence pattern for one set of species (i.e., the

response variables), given a particular presence-absence

pattern for another mutually exclusive set (i.e., the

predictors). We can also compute these conditional

probabilities at observational units that were not used

to fit the model, because our random-effects approach

allows us to make inferences about the statistical

population. Such out-of-sample predicted probabilities

will be less accurate than within-sample fitted probabil-

ities, but they allow us to explore the reliability of

population-level inferences made by the fitted model.

FISH COMMUNITY EXAMPLE

Using our R package, reo (Appendix B, Supplement 2),

we applied this modeling procedure to the data on the

presences and absences of 30 fish species (variables) in the

52 lakes (observational units) of the Black-Hollow

watershed (Supplement 1). We used acronyms to refer to

the species (Supplement 1). We fit five candidate logistic

ordination models to the same 34 lakes that were used as a

training set for the limnology data example (Limnology

example). Only 23 of the 30 species were present at two or

more of these 34 lakes, which led us to remove the other

seven species. The candidate models were each associated

with a value for the regularization parameter, k¼0.1, 1.1,

2,1, 3.1, 4.1 (larger values denote simpler models). CVIC

selected a fitted model with 3.4 parameters per species (k¼
1.1) in the training sample (Fig. 8B), and therefore we used

this model to make inferences and predictions. The most

complex model has a particularly large CVIC, indicating

that regularization vastly improves prediction; in fact,

when k is allowed to go all the way to zero (i.e., maximum

complexity), CVIC¼‘.

Fig. 8C–F gives four ordination biplots of this model,

each with different species represented. Species were

divided among panels to reduce visual clutter. The 1/2

probability contours for four species are absent because

their probability of occurrence is less then 1/2 over the

entire ordination space. The gray circles and squares

represent the training and validation lakes; sizes of these

shapes are proportional to latitude. The plots suggest

that more northern lakes tend to be positioned at

positive values of both axes, although this trend is not

particularly strong. Such trends could be assessed with

significance tests on the estimated axis scores but this is

beyond our scope as many such methods already exist

(e.g., Clarke 1993). As with the limnological example the

validation lakes are well interspersed amongst the

training lakes in the ordination space, meaning that

predictions of the validation lakes will be best described

as interpolative rather than extrapolative.

The variety of contour shapes highlights the utility of

our approach for capturing complex patterns relative to

classical latent variable ordination (e.g., ter Braak and

Prentice 1988), which requires that species be classified a

priori as either all S-shaped or all unimodal. The biplots

tell us that several species are extremely widespread,

having probabilities of occurrence greater than 1/2 over

most of the ordination space (PS, WS, YP, BB, CC).

The species contours also provide a great deal of

information about how species are associated in the

training lakes. For example, BT and NRD have parallel

contours with arrows pointing in the same direction

(Figs. 8C), suggesting that they tend to co-occur. The

raw data support this interpretation, as NRD was 1.8

times more likely to be present at lakes with BT than

without BT. Non-monotonic relationships are also

illustrated; for example, LB, GS, and PD are all more

likely to be present when the other two are absent, as

their optimum probabilities of occurrence occur at

different places along axis I (Fig. 8D). We also see

relationships between monotonic and unimodal species

(e.g., a negative association between LB and NRD). The

biplots visually illustrate many such co-occurrence

patterns simultaneously; as always with ordination

analysis, implied trends should be checked by examining

their consistency with the raw data.

But how appropriate are the biplots as summaries of

the data? To answer this, we can look at the model on

which the biplots are based in more detail. Fig. 9 shows

the fitted probabilities of occurrence of the twenty most

widespread species in the training lakes, given the

presence-absence pattern of all other species; the

probabilities are shown as separate boxplots for lakes

in which the focal species was present and lakes in which

it was absent. In general, the model fits well, in that it

tends to predict higher probabilities of occurrence when

the response species is actually present. Therefore, we

can be more confident that the trends displayed by the

contour biplots give an honest representation of the

patterns in the data.

But how well does the model perform on new data?

Our random-effects approach allows us to test the model

in the 18 validation lakes (Fig. 10). For the majority of

species, the good fits to the training data correspond to

good out-of-sample predictions. However, there were

exceptions. For example, the most (i.e., YP) and least

(i.e., BS,BD) common species were well fitted to the

training data (Fig. 9) but were poorly predicted (Fig.

10). Such a finding is not surprising because there is little

information in the data about the lakes at which

common (rare) species are absent (present). However,

even some moderately common species were poorly

predicted in the validation lakes (e.g., GS). Importantly,

classical fixed-effects approaches are unable to detect

such poor out-of-sample predictive performance. In

contrast, our random-effects approach helps to highlight
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the predictive limitations of multivariate information

that is visualized in biplots and therefore to avoid over-

interpreting our data.

To demonstrate that our symmetric predictions based

on species occurrences can outperform standard asym-

metric approaches that use environmental predictor

variables, we compared our model predictions with

those of logistic regressions of each species on lake pH

(Fig. 11). Acidity has been identified as an important

factor in this system (Jackson 1988). Each regression

was fitted to the training lakes and tested on the

validation lakes. Although the logistic regressions

outperformed our symmetric model for some species

(most notably the rare ones, BS, BD), the opposite was

true in the majority of cases. In one species (GS), logistic

regression predicted higher probabilities of occurrence

when GS was absent then when it was present. One

interesting reason for the relatively good prediction of

our community model over logistic regression is that

species naturally integrate information on a wide variety

of environmental variables, whereas pH only integrates

information on variables to which it is correlated. Of

course this is only one example, but it suggests that

predictions based solely on co-occurrence patterns can

FIG. 9. Fits of each variable in the fish community training data to the selected latent trait model. The plots show the fitted
probability of occurrence (x-axis) against observed presence or absence (y-axis) with boxplots giving variation in the fits; points are
outliers, whiskers give extremes, and hinges give the first and third quartiles. Vertical lines give the proportion of lakes at which the
species was present. Labels on y-axes are species abbreviations (see Supplement 1).
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be useful. We predict that models that include both

external environmental predictors and latent random

effects may prove to be particularly useful, because the

latent variables could ‘‘fill in’’ any patterns that are

unrelated to the environmental predictors.

PRACTICAL RECOMMENDATIONS

Although random-effects ordination is new to ecology,

the idea of using random latent variables to explore,

describe, and predict multivariate relationships has been

extensively developed in other fields.Maximum likelihood

factor analysis and latent trait models were originally

developed to address questions in psychology (e.g.,

Lawley and Maxwell 1962, Lord 1986). More recently,

the field of machine learning has seen an explosion of

methodological work on random latent variables (e.g.,

Lawrence 2005). There are therefore tremendous oppor-

tunities for developing more flexible random-effects

ordination methodologies then those outlined here.

Still, via transformation and outlier removal, the

multivariate-normal and binary methods developed here

will provide appropriate ordinations of many ecological

data sets. Fig. 12 gives a key for deciding whether a data

set is suitable for the methods covered here or if it will be

FIG. 10. Predictions of each variable in the fish community validation data using the selected latent trait model. The plots show
the predicted probability of occurrence (x-axis) against observed presence or absence (y-axis) with boxplots giving variation in the
predictions. Solid (dotted) vertical lines give the proportion of validation (training) lakes at which the species was present.
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necessary to explore the methodological literature

outside of ecology: we are less enthusiastic about the

third option of treating axes as fixed effects if they are

indeed best modeled as random. Furthermore, as more

and more latent variable methods are made available

through R, these concerns will quickly vanish.

The first decision in the key is whether or not the data

are approximately multivariate-normal. There are sev-

eral ways to check for multivariate-normality. We have

generally found informal inspection of pairwise scatter-

plots to be adequate for such checks; if the pairwise

relationships are approximately linear with homoge-

neous residuals then it is reasonable to tentatively

assume multivariate normality. If non-normality is

suspected, a transformation may normalize the data.

For example, most of the variables in our limnological

data were log transformed before analysis. For commu-

nity data, a Hellinger transformation can often help

(Legendre and Gallagher 2001), but we have found it to

be less effective for rare species. A decision could be

made to remove rare species but this will obviously

result in a loss of information.

FIG. 11. Predictions of each variable in the fish community validation data using logistic regressions with a pH predictor
variable. The plots show the predicted probability of occurrence (x-axis) against observed presence or absence (y-axis) with
boxplots giving variation in the predictions. Solid (dotted) vertical lines give the proportion of validation (training) lakes at which
the species was present.
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If the data are reasonably assumed to be multivariate-

normal, the next step is to check for outliers and missing

variables. The R mvoutlier package is useful for

detecting multivariate outliers (see footnote 2). If

observational units with outlying or missing variables

are present, one must decide whether to remove them or

not. Removing them results in a loss of information,

possibly leading to the selection of uninteresting simple

models. However, removal has the benefit of leading to

data that can be appropriately analyzed by factor

analysis: the simplest procedure for random-effects

ordination; often the number of observational units is

not appreciably impacted if problematic data are simply

removed, as in our example. When deciding the fate of

outliers in particular, remember that if x% of the data

are identified as outliers, inferences based on the

remaining data will apply to approximately (100 � x)%
of the observational units in the statistical population. If

this percentage is deemed too low for a particular

application, then multivariate normal methods are

probably not appropriate. If the data are transformable

to approximate normality and outliers and missing

values can be removed, then we recommend factor

analysis for random-effects ordination.

A common type of data that cannot be transformed to

normality are binary presence–absence data. We recom-

mend latent trait models for such data sets. Latent trait

models may also be suitable for data sets that are

transformable to binary. For example, abundance data

can always be transformed to binary by setting all

abundances greater than zero to one. Of course there is a

loss of information with such transformations, but often

this lost information is related to uninteresting processes

and is best removed anyway. For example, some fish

species are more likely to be detected by certain

sampling methods making interspecific comparisons of

abundances difficult; transformation to binary data is

often more appropriate in these cases (Jackson and

Harvey 1997). Such problems often arise in studies of

animal communities because animal species often

differentially avoid capture. Furthermore, transforming

to binary has the benefit of down-weighting the influence

of outliers.

Although transformations and outlier removal sim-

plifies analysis, this is not an ideal strategy because it

tends to de-emphasize what might be the most

interesting features of the data! The dotted box in Fig.

12 lists some techniques that can model such anomalous

features rather than remove them. Although these

methods are not explicitly covered in our study, the

methods we present can be modified to account for more

complex situations. For example, our latent trait model

FIG. 12. A decision key for assembling a candidate set of random-effects ordination models. There are three possible endpoints:
(1) factor analysis (see Linear random-effects ordination by factor analysis and Limnology example); (2) latent trait models (see
Logistic random-effects ordination by latent traits and Fish community example; or (3) the dotted box with techniques that are not
explicitly covered in this manuscript. See Practical recommendations for a more detailed explanation of the key.
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could be modified to handle abundance data by

changing the logit-link function to the log-link and

changing the Bernoulli distribution to the Poisson. For

abundance data with many zeros, a zero-inflated

Poisson distribution (e.g., Hall 2000) might be more

appropriate. Statisticians have also developed versions

of factor analysis that are more robust to outliers.

Instead of multivariate-normality these methods assume

a multivariate t distribution, which is more likely to

predict extreme observations.

One important extension of our methodology would

be to allow for observational units with missing values.

Information in such units can be utilized by an iterative

model-fitting technique called the EM-algorithm (expec-

tation-maximization) that is designed specifically to

handle missing values (Dempster et al. 1977). The

algorithm that we used to estimate latent trait models is

based on EM and therefore could be modified to accept

data with missing values. In fact, the EM algorithm is a

powerful tool in random latent variable modeling, as the

latent variables themselves can be thought of as

‘‘missing.’’ For example, the EM-algorithm can also be

used to fit models to data that are neither normal nor

binary, without having to resort to transformation or

outlier removal (McLachlan and Peel 2000: chapter 8).

This approach, called mixture modeling, uses normal (or

other simple) distributions as building blocks to build up

more interesting distributions; an additional latent

variable is used to assign each observational unit to

one of the building block distributions. The

FLXMCfactanal function in the R flexmix package

can be used to fit such models (called mixtures of factor

analyzers). Machine learning researchers have developed

software for such latent variable EM algorithms in

languages such as C and MAT LAB. Several books on

mixture modeling are useful for help with constructing

EM algorithms (e.g., McLachlan and Peel 2000). As free

statistical software continues to be developed for

environments such as R, it will not be long before these

more sophisticated methods become common and user

friendly.

The steps of random-effects ordination analysis

Assemble a set of candidate models.—It is important to

ensure wide variation in complexity among the candi-

dates, so that information criteria can be used to select

an appropriate level of complexity. For factor analysis,

the set of candidates consists of the null and full models

as well as models with d ¼ 1, . . . , b p þ (1/2) �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ ð1=4Þ

p
c axes (b�c is the floor function, p the

number of variables); complexity is then measured by

the number of axes. If our latent trait models are used,

each candidate corresponds to a different value of the

regularization parameter, k. We compared models with

k¼ 0.1, 1.1, 2.1, 3.1, 4.1. It may be necessary to consider

k . 4.1 for some data sets to ensure that a null model is

included with all non-intercept coefficients set to zero.

We do not recommend using k , 0.1, because in our

experience this results in models with large coefficients

that are over-fitted and poorly predict new data. If

neither factor analysis nor latent trait modeling are used,

the principle is the same: assemble a set of related

models that differ in complexity.

Identify/develop software.—If factor analysis or latent

trait modeling is used, our R package, reo, is available

for model fitting (Appendix B, Supplement 2). If a

different set of models is deemed necessary, alternative

software is required. The R packages sem, ltm, flexmix,

and MCMCpack contain functions for fitting many such

models. We emphasize that coding your own algorithms

leads to a much better understanding of the methods

and how to interpret them; for this purpose, we

recommend a good book on statistical modeling in

ecology (e.g., Hilborn and Mangel 1997, Burnham and

Anderson 2002, Clark 2007, Bolker 2008) and a good

book on the EM algorithm (e.g., McLachlan and Peel

2000).

Model selection.—We recommend selecting the model

with the lowest value of an information criterion, while a

simpler model can be used if it is adequate for the

question at hand (e.g., Cudeck and Browne 1983).

However, it is never appropriate to use a model that is

more complex than the selected model. With factor

analysis we recommend MAICc, as it performed well in

our simulations. When maximum likelihood is not used,

such as with our latent trait models, CVIC will usually

be necessary unless it can be shown that AIC-based

criteria give approximately unbiased estimates of Kull-

back-Leibler information. Although CVIC is more

widely applicable, it is computationally slower, because

each model must be fitted n times. Our R function took

approximately three minutes to compute the CVIC

values for our fish example. For larger data sets, this

time will obviously increase, perhaps beyond acceptable

amounts of time. Recent statistical work on developing

modifications of AIC for LASSO-based regression

models (Zou et al. 2007) and regularized latent trait

models (Houseman et al. 2007) are promising and

approximately n times more computationally efficient

than CVIC, but are currently untested on multivariate

ecological data. Until these approaches become better

developed, we recommend using k ¼ 1 in situations

where cross-validation is not computationally possible,

as this k value cross-validates well in our experience.

Compare fitted values and predictions with data.—

Although information criteria select models that make

good predictions relative to the other candidates, it is

important to check the absolute quality of selected

models. A first step is to consider the percentage of

variation explained by the ordination, as in classical

analyses (e.g., PCA). But such simple measures do not

address the details of model successes and failures. We

recommend making predictions that can be graphically

checked (e.g., Figs. 3, 4, 9, and 10), just as we would

check the predictions of regression models against data.

We also recommend making out-of-sample predictions
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on data that were not used to fit the model, if such data

are available; out-of-sample predictions test the strength

of the inferences that the model makes about the

statistical population. It will not always be feasible to

include all possible predictions in a research paper.

However, we strongly recommend including as much

material as possible, in electronic appendices perhaps, so

that people can make up their own minds about the

quality of the models.

Make biplots.—The production of a biplot (e.g., Figs.

2 and 8) is the classical endpoint of ordination analysis.

Within our random-effects approach such summaries

should be based on the coefficients that relate the

variables to the axes, because these coefficients deter-

mine the population-level inferences and predictions

made by the fitted model. Therefore, the utility of the

summaries can be assessed by how well the model

predictions succeed (previous step). In factor analysis we

use arrows to represent the variables, in the familiar way

that they are used in PCA. In latent trait models, we

used contour lines connecting points in the ordination

space of equal probabilities of occurrence. Our R

package includes functions for computing these biplots,

but we look forward to new inventive visual represen-

tations of random-effects ordination models.

Repeat.—We view random-effects ordination as an

iterative process requiring human ingenuity: informa-

tion criteria are only guides. At every stage of analysis,

the models should be scrutinized. If model inadequacies

are identified, it might be a good idea to start again from

the first step with a new set of candidate models. For

example, we first fitted latent trait models to the fish

community data using the R ltm package. But we found

that the fitted models were predicting probabilities of

occurrence that were too extreme to be ecologically

reasonable (Estimation and model selection; Appendix

B). We therefore modified our fitting procedure with the

LASSO to obtain better models. In general, we have an

increased chance of finding problems with random-

effects ordinations relative to classical procedures,

because of the additional population-level inferences

that random-effects models make. This might seem like

a disadvantage of the random-effects approach, but we

see it as beneficial for the goal of developing believable

quantitative models. Still, it is important to eventually

stop looking for model inadequacies, which will always

be present.

CONCLUSION

We have argued that ordination analysis can and

should be done from a random-effects perspective, and

provided practical guidelines and software for doing so.

This perspective has the benefit of allowing us to tackle

multivariate problems using many of the tools from

univariate statistics, including the checking of model

assumptions, model validation on independent data, and

model selection using information criteria. We conclude

with some implications of our approach for ecology.

Our random-effects approach addresses the interplay

between exploratory and confirmatory multivariate

ecological analysis. The spirit of ordination is to analyze

multivariate relationships without making assumptions

about causality. The models that we use here are

consistent with this spirit; all variables are treated

symmetrically, in the sense that there are no a priori

variable-specific assumptions. This symmetry gives

random-effects ordination models the exploratory em-

phasis they should have. At the same time, our approach

is closely related to structural equation modeling (e.g.,

Grace 2006), which uses random latent variables to

assess the evidence in multivariate data for a priori

causal hypotheses. Random-effects ordination models

may be modified to include information from causal

hypotheses. One exciting prospect here is the potential

for using information criteria to select between explor-

atory random-effects ordinations and confirmatory

structural equation models; if this approach is done

appropriately then selecting an ordination might suggest

that our scientific ideas are less predictively successful

than data exploration, indicating that our ideas require

refinement. Work outside of ecology has been done on

the relationship between exploratory and confirmatory

structural equation modeling (e.g., Bollen 1989), pro-

viding a rich literature to draw on.

While we see great potential in random-effects

ordination, it may not always be appropriate. For

example, if our observational units consist of nature

preserves, then the axes may truly be fixed effects if we

sampled all nature preserves of interest. In general,

fixed-effects ordination will be more appropriate when-

ever it is possible to exhaustively sample the target

statistical population of observational units.

Although we studied ordination models in which all

effects are random, we see the development of mixed-

effects ordination as an important next step. These

models would include both fixed-effects predictors as

well as the random-effects we consider, and are

beginning to be explored outside of ecology (Houseman

et al. 2007). For example, it is possible to produce

mixed-effects versions of classical asymmetric ordina-

tion models (e.g., redundancy analysis; canonical

correspondence analysis), by adding random axis terms.

We demonstrated the possibility of using random axes

to model between-species associations that are left

unexplained by environmental predictors (e.g., Section

8). Such associations can arise from species interactions

or missing predictors, and are considered an important

challenge in predictive ecological modeling (Elith and

Leathwick 2009).

Advocates of multidimensional scaling may eschew

our emphasis on explicit model assumptions, arguing

instead for a robust approach to ordination that is able

to handle a wide variety of underlying patterns (e.g.,

Minchin 1987). But no method is assumption free.

Explicit probabilistic modeling lays bare the assump-

tions behind the methods. The probabilistic approach to
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ordination encourages ecologists to construct explicit

working models of their study systems. The strategy of

checking and comparing the assumptions and predic-

tions of alternative models is central to science: we have

formalized ordination analysis from this perspective.
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APPENDIX A

Mathematical details of random-effects ordination (Ecological Archives M081-023-A1).

APPENDIX B

Tutorial on using the reo package in R (Ecological Archives M081-023-A2).

SUPPLEMENT 1

Data from the Black-Hollow watershed (Ecological Archives M081-023-S1).

SUPPLEMENT 2

R source code and manual for the reo package (Ecological Archives M081-023-S2).
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