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COMPOSITIONAL DATA IN COMMUNITY ECOLOGY: THE PARADIGM OR
PERIL OF PROPORTIONS?
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Abstract. Ecologists are often restricted to using or choose to use proportional- or
percentage-type data with the view that it helps standardize for differences in variable totals
among sampling units or individuals. This standardization to compositional data leads to
constraints in the covariance and correlation structure that profoundly affect subsequent
analysis and interpretation. This is another form of the problem related to the use of ratios
in statistical analyses. Using simulated and zooplankton data I demonstrate the effect of
using compositional data vs. the original data in correlation, ordination, and cluster analysis,
which are common analytical methods in community ecology. Interpretations about the
relatedness of various taxa or sites may reverse when using compositions relative to the
unstandardized data. In addition, the selection of subcompositions (i.e., one or more vari-
ables are excluded when calculating the composition) may have profound and unpredictable
consequences for the results. I examine some approaches proposed to deal with such data,
e.g., centered log-ratio analysis, and recommend the use of correspondence analysis in
multivariate studies to avoid the problems associated with differing solutions.

Key words: community ecology, statistics; compositional data, analysis; ipsative data; multivariate
statistics; normative data; percentage, statistical analysis; proportion, statistical analysis; statistics,
proportional data.

INTRODUCTION

Ecologists must often analyze data sets comprising
samples varying greatly in total species abundance. In
this instance species with the greatest abundance in an
observation may overwhelm the analysis and subse-
quent relationships may simply reflect differences in
absolute abundance rather than relative abundance. To
compensate for this problem, ecologists often choose
to convert such data to proportions, percentages, or
frequencies by dividing each variable by the total for
each observation prior to more detailed analysis. The
rationale for this standardization is the desire to com-
pare all samples on a similar scale, thereby ‘‘correct-
ing’’ or removing the influence of overall species abun-
dance. Conceptually, this approach is appealing; how-
ever, it is rarely recognized that this standardization
will limit the possible range of interspecific relation-
ships as well as the patterns among the samples. Oc-
casionally data are converted to proportions for other
reasons. For example, Gates et al. (1983) found that
ordinations were easier to interpret and that greater
amounts of the total variance could be explained by
using proportional data. In general, the implications of
this type of standardization and its consequences are
not recognized by ecologists. By converting raw data
to compositional data (i.e., percentages, proportions, or
frequencies), changes in the covariance and correlation
structure of the data matrix may lead us to conclude
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that particular relationships exist when such patterns
are predictable artefacts of this type of standardization
(Chayes 1971, Aitchison 1986).

The difficulty with using traditional or standard sta-
tistical approaches when analyzing such data is that the
results obtained from an analysis of the raw data (i.e.,
termed the ‘‘basis’’ or ‘‘normative data’’ in the liter-
ature) and from the ‘‘compositional’’ or ‘‘ipsative’’
data lead to very different interpretations. The raw data
may suggest that some variables are uncorrelated with
one another, whereas the composition-based analyses
may show highly correlated relationships for the same
variables. As well, the reverse situation occurs fre-
quently. The difficulty is how to reconcile these di-
vergent results when both are available. Also, it is often
the case that only the composition is available (e.g.,
paleolimnology, toxicology, activity budgets, feeding
selectivity). Ideally, what we require is a means of
analyzing the data that emphasizes relative, rather than
absolute, relationships between variables and provides
a similar result regardless of whether the basis or com-
positional data are analyzed. Such a result would permit
us to compare results obtained from studies employing
different enumeration methods. For example, it is com-
mon in working with zooplankton, pollen, and various
other taxa that a specific number of organisms be count-
ed, e.g., a count of 300 individuals, and then the relative
proportions of each taxon in an observation be deter-
mined prior to statistical analysis. However, other re-
searchers working with these same taxa may choose a
different approach, e.g., based on total counts found in
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TABLE 1. Means and variances for the basis and composition
for simulated data SIM and lake zooplankton ZOO.

Statistic

Basis variables for SIM

S1 S2 S3 S4 S5

Mean
Variance

30
16

60
16

60
64

120
64

120
4096

Basis variables for ZOO

H1 H2 H3 H4 H5

Mean
Variance

83.82
7687

33.63
1211

266.6
49110

95.64
7971

43.34
1837

a specified volume. If the results are analyzed with
traditional statistical approaches, then the interpreta-
tions and conclusions may depend predominantly on
the method of enumeration and standardization, rather
than on any inherent ecological relationships. If we can
use alternative methods of analysis, as identified in this
paper and the references therein, then we can compare
results from different studies without concern for the
constraints imposed by differences in the basis and
composition, but rather focus on the ecological rela-
tionships.

The underlying principle in using proportions is to
understand how one variable responds relative to an-
other when standardized to a common scale. This has
led some researchers to propose using ratios as a means
of scaling variables (e.g., Mosimann and James 1979,
James and McCulloch 1990). Some measure of the
magnitude or size of each observation is selected (e.g.,
total length in morphometrics) and all variables are
divided by this measure to scale the variables to a com-
mon level, and then, generally, log transformed. (Note
that ratio-based analysis is not without controversy,
e.g., Atchley et al. 1976, Gibson 1984, Pearson 1897,
Rising and Somers 1989, Jackson and Somers 1991).
This approach is used as a means of examining the
pattern of ‘‘relative’’ covariation between the variables
after ‘‘standardizing’’ for the magnitude or size effect.

Although standardizations are common throughout
biology, I will illustrate their effects with several sta-
tistical methods commonly used by community ecol-
ogists. I use simulated data where the relationships be-
tween variables are known, as well as lake zooplankton
data, to show how interpretations change dramatically
depending upon whether raw or compositional data are
analyzed.

METHODS

Data sets

Data set SIM was simulated to comprise 200 ob-
servations for each of five variables with different
means and variances (see Table 1). The variables were
simulated to be independent with correlations of zero
(Fig. 1). For each observation (i.e., row) in this matrix,
the total was calculated and each value in that row was

divided by the row total. This transformed the data from
the original abundances (hereafter referred to as the
basis following Aitchison 1986) into proportions or, if
multiplied by 100, into percentages (hereafter referred
to as the composition).

The abundances of zooplankton in five size classes
from 26 lakes comprised the second data set (the matrix
ZOO; Table 1). These data are annual ice-free abun-
dances of herbivorous zooplankton collected by the
Lake Ecosystem Working Group (LEWG; Gates et al.
1983, Paloheimo and Zimmerman 1983, Zimmerman
et al. 1983). These data were converted to composi-
tional data by dividing the value for each size class by
the total abundance for a given lake.

Data analysis

Statistical analyses included several methods used
by ecologists and particularly community ecologists.
Simple bivariate summaries based on Pearson product-
moment correlation coefficients were calculated. The
statistical significance of these correlations was as-
sessed using standardized tables and randomization
tests (e.g., Jackson and Somers 1991, Manly 1991).
Within each matrix the pairwise correlations between
variables were calculated. Values within each variable
were then randomly permuted among observations,
thereby destroying the original covariance structure.
Using these randomized values, the correlations were
recalculated. These calculations were repeated for
10 000 permuted matrices to generate a distribution of
correlation coefficients when the observations are truly
arranged randomly. The proportion of correlation co-
efficients having an equal or more extreme value is the
associated degree of probability of the null hypothesis
(i.e., random correlation) being true. When calculating
null correlations for the compositions, the row totals
for each observation in the randomized basis was de-
termined (i.e., after the permutation step). Each value
in a given row was then divided by the row total to
convert it to a proportion prior to calculating the in-
tervariable correlations.

Principal components analyses (PCA) using corre-
lation and covariance matrices were calculated (SAS
1988). Ordination analyses are methods used by ecol-
ogists and PCA is a commonly employed and a con-
ceptually simple method summarizing linear multivar-
iate patterns (e.g., Legendre and Legendre 1983, Digby
and Kempton 1987, Reyment 1991). A second ordi-
nation method, correspondence analysis (CA), was also
used, which incorporates an implicit double centering.
The resemblance measure is based on a chi-squared
statistic, rather than correlation or covariance measure.

Classification is another approach often used by
community ecologists. As an example of this approach,
I used an agglomerative hierarchical cluster analysis
(Unweighted Paired Group Method of Averaging;
UPGMA) of the correlation matrices. This summarized
the multivariate relationships for both the basis and the
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FIG. 1. Bivariate casement plots of the basis (lower triangular matrix) and composition (upper triangular matrix) for the
simulated data SIM. The basis relationships are independently generated, and correlations approximate zero. Note the strong
linear relationships in the composition arising due to the constant-sum constraint, i.e., matrix closure. S1–S5 represent
variables.

composition. The two resultant dendrograms were
compared visually to illustrate how the standardization
changed the interpretation of the relationship among
variables. An additional cluster analysis of the lakes
based on the interlake Euclidean distances was com-
pleted using the basis and compositional forms of the
zooplankton and simulated data. The results from the
interlake comparison simulated data are not presented
simply due to the large dendrogram resulting, i.e., 200
observations. The CA and cluster analyses were done
using NT-SYS (Rohlf 1993).

RESULTS AND DISCUSSION

What are the implications of using proportions on
covariance and correlation structure?

For the raw data, bivariate statistics revealed no ev-
idence of statistically significant relationships (Fig. 1).
However, the ‘‘standardization’’ of the basis to com-
positional data produced ‘‘significant’’ bivariate cor-
relations between the variables and strong linear bi-
variate patterns (Fig. 1). This apparent significance is
due to the constraint that each observation must sum
to a constant (i.e., 1.00 or 100%). In such analyses,
compositional data will be biased toward negative re-
lationships because of the following conditions (using
the notation of Aitchison [1986]). Consider a basis ma-

trix x composed of D parts or variables (x1,. . .xD). The
variance of variable i is represented as var(xi), the co-
variance between variables i and j as cov(xi, xj), and the
correlation as corr(xi, xj). Using these definitions, we
can generate D variances var(xi) where i 5 1, . . .D and
the number of covariances will be 0.5dD covariances
cov(xi, xj) (d 5 D 2 1; i 5 1, . . . d; j 5 i 1 1, . . . D),
or expressed alternatively as D(D 2 1)/2.

For any given variable in a covariance matrix of
compositional data, the sum of the variances and co-
variances must equal zero. It then follows that the total
of the variances and covariances for the entire matrix
must also equal zero. This is a simple function of the
constant-sum constraint. We can express the constraint
on the covariance matrix as cov(x1x1 1 x1, x2 1 . . . 1
xD, xD) 5 0. Given that all the variances must be positive
and the constraint above, it follows

var(x ) 5 cov(x , x ) 5 2 cov(x , x ).O O Oi i j i j
i i5j i.±j

We can see that given this relationship, some of the
covariances must be negative. In fact, Aitchison (1986)
shows that at least D of the possible D(D 2 1)/2 co-
variances must be negative. This balances the D pos-
itive values representing the variances. For example,
with SIM the sum of the variances is equal to 0.0180,
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FIG. 2. Frequency distributions of the bivariate correlations for SIM obtained under randomization. Each plot corresponds
to the correlation between two variables from the basis (lower triangular matrix) or the composition (upper triangular matrix)
used in Fig. 1. The basis matrix was randomized within each column, the composition recalculated, and the correlation
recalculated. Each plot is a frequency distribution of the correlations obtained from 10 000 randomized matrices.

the sum of the positive covariances is equal to 0.0081,
and by definition the negative covariances must be
equal to 20.0261. This condition holds for matrix SIM
and any other composition. The implications of this
condition are generally not considered. Our usual null
hypothesis when assessing a correlation coefficient is
that of independence between the variables, i.e., H0: r
5 0. Although the basis correlations approach zero, the
constant-sum condition (i.e., ‘‘matrix closure,’’ al-
though this term is no longer favored) results in highly
significant correlations among variables in the com-
positional data (Fig. 1). For example, the basis vari-
ables S4 and S5 have a correlation of 20.036, whereas
in their compositional form the correlation is 20.953.
This relationship is not due to any inherent association
between the original variables. It is due only to the
standardization, and it, therefore, is an artefact of the
standardization. Moreover, with compositional data the
correlation coefficients are not free to range between
21 and 1. This constraint on the range of values is
clearly illustrated in Fig. 2 and also identified by Rey-
ment and Jöreskog (1993: 124). As a result, our stan-
dard null hypothesis regarding association is inappro-
priate (Chayes 1971, Jackson et al. 1989, Jackson and
Somers 1991).

The randomization procedure illustrates clearly the

distribution of the correlation coefficients when using
compositional data (Fig. 2). Correlations based on the
randomized basis data show symmetrical distributions
centered on zero. This is the expected distribution of
random correlations representing distributions com-
parable to those from classical statistical tables. How-
ever the distributions for the compositional data are no
longer centered on zero. In fact the zero value, our
traditional test of the null hypothesis, lies outside of
the distributions for all of the bivariate relationships
from the compositional data. This example is a gen-
eralization of the effect shown by Jackson et al. (1989)
and Jackson and Somers (1991). Most of the compo-
sitional correlations range between 0.65 and 0.95.
When variable S5 is included in a correlation, the re-
sults are correlations ranging between 20.77 and
20.95. This result is due to the relatively large mean
and variance of S5 in the basis. Given these conditions
in the basis, S5 has a large influence on the overall
sum for each observation and subsequent calculation
of each proportion, thereby resulting in the other vari-
ables being negatively correlated with S5.

The zooplankton data set also shows a similar, al-
though less clearly defined effect. Many of the corre-
lations change from positive to negative in direction
(Fig. 3). Many of the correlations are weak in both the
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FIG. 3. Bivariate casement plots of the basis (lower triangular matrix) and composition (upper triangular matrix) for the
zooplankton data ZOO. The basis relationships are independently generated, and correlations approximate zero. Note the
strong linear relationships in the composition arising due to the constant-sum constraint, i.e., matrix closure. H1–H5 represent
variables.

basis and composition, often with nonlinear patterns in
the data. As such, the Pearson correlations underesti-
mate the strength of some relationships, but are retained
for consistency with the simulated data example. In
several cases the correlations change from being ‘‘non-
significant’’ with the basis to ‘‘significant’’ with the
composition (e.g., H1 with H3, r 5 0.102 and r 5
20.720, respectively). Under the permutation proce-
dure the derived distribution of correlations shows
greater variability (Fig. 4) than that found with the
simulated data (Fig. 2) due to both sample size effects
and the degree of linearity between variables (i.e.,
greater variability in the correlation coefficients with
ZOO due to the nonlinear nature of the bivariate re-
lationships). Many distributions for the basis are
skewed slightly, but centered on zero. Many of the
composition distributions are more symmetrical, but
several show a negative bias in their location with few,
if any, zero values occurring (e.g., correlations between
H1 and H3).

This bias in the correlation structure has long been
recognized. Pearson (1897) discussed the problem of
spurious correlations with the use of indices that com-
prise a part-whole relationship. Compositional data are
a special type of ratio wherein each datum is divided
by the sum of the variables for any given observation.
Since Pearson’s work, a better understanding of the

problems of using compositional data has followed
from Chayes (1960, 1971, 1983), Butler (1976, 1978,
1979a, b, 1981), Aitchison (1981, 1982, 1986) and
Reyment (Reyment 1991, Reyment and Jorsekog 1993)
in the statistical and geological literature. A parallel
set of literature exists in the psychometrical and so-
ciological literature (Cattell 1944, Jackson and Alwin
1980, Dunlap and Cornwall 1994), although there ap-
pears to be no recognition of the work between these
fields, likely due to differences in the terminology. (The
basis is referred to as normative data, whereas the com-
position is called ipsative data.) The magnitude of this
bias depends on the number of variables used in the
analysis. It is most pronounced with few variables and
decreases in magnitude as the number of variables is
increased.

Chayes and Kruskal (1966) proposed a test of the
presence of significant correlations in compositional
data. Their test was based on simulating a basis data
set that produced compositional data with similar char-
acteristics as the observed compositional data. Aitch-
ison (1981) noted several shortcomings with their ap-
proach. For example, different basis data sets can give
rise to identical compositions, and negative variances
can arise in simulating basis data (Butler 1975). There
is no overall test available so numerous pairwise tests
must be done, and the distribution of the test statistic



934 Ecology, Vol. 78, No. 3DONALD A. JACKSON

FIG. 4. Frequency distributions of the correlations for ZOO obtained under randomization. Each plot corresponds to the
correlation between two variables from the basis (lower triangular matrix) or the composition (upper triangular matrix) used
in Fig. 3. The basis matrix was randomized within each column, the composition recalculated, and the correlation recalculated.
Each plot is a frequency distribution of the correlations obtained from 10 000 randomized matrices.

TABLE 2. Correlation matrices for compositions from SIM.
The upper triangle shows correlations when variable S5 is
included in calculating the row totals, and the lower triangle
shows correlations when variable S5 is not included in
calculating the row totals, i.e., a subcomposition. Proba-
bility of H0 5 0 as determined from statistical tables is
shown in parentheses.

Variables

Variables

S1 S2 S3 S4

S1

S2

S3

S4

20.032
(0.652)

20.316
(0.0001)

20.259
(0.0002)

0.711
(0.0001)

20.372
(0.0001)

20.223
(0.0015)

0.541
(0.0001)
0.706

(0.0001)

20.644
(0.0001)

0.656
(0.0001)
0.826

(0.0001)
0.668

(0.0001)

is unknown. As a result, Chayes and Kruskal’s ap-
proach is no longer used.

Standard statistical texts (e.g., Zar 1984, Sokal and
Rohlf 1995) recommend transforming proportions us-
ing an arcsine square-root transformation as a means
of normalizing the distribution of points about the
mean. Although this transformation corrects the prob-
lem of truncated tails in variable distributions, it will
not resolve the problem of closure. For example Butler

(1981) used a variety of transformations and found the
transformations do not correct for the constant-sum
constraint even though the intervariable or interobser-
vation relationships may be altered.

Another complication that arises during the analysis
of compositional data involves the use of subcompos-
itions, i.e., a subset of the variables (e.g., a set of four
of the five variables in SIM would represent a sub-
composition). When analyzing the correlation of two
variables, one expects their relationship to remain sim-
ilar regardless of whether another variable is included
in the data set or not. With the zooplankton data we
would expect that the correlation between two taxa (or
size classes) should not change if we add additional
taxa (or size classes) to the data set. Unfortunately, this
is not the case with compositional data. In fact, Rey-
ment (1989:31) states ‘‘as one moves from a D-part
composition towards subcompositions of decreasing di-
mension, the correlations may fluctuate wildly in mag-
nitude as well as in sign.’’ As an example, consider
the results from SIM where variable S5 is excluded in
determining the composition (Table 2). Variables S1
and S2 are uncorrelated (r 5 20.03) and all other vari-
able combinations have weak, but ‘‘statistically sig-
nificant’’ negative correlations as assessed by statistical
tables. The exception being variables S3–S4 with a
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TABLE 3. Correlation matrices for compositions from ZOO.
The upper triangle shows correlations when variable H3 is
included in calculating the row totals, and the lower triangle
shows correlations when variable H3 is not included in
calculating the row totals, i.e., a subcomposition. Proba-
bility of H0 5 0 as determined from statistical tables is
shown in parentheses.

Variables

Variables

H1 H2 H4 H5

H1

H2

H4

H5

20.016
(0.939)

20.808
(0.0001)

20.377
(0.058)

20.043
(0.835)

20.249
(0.220)

20.509
(0.008)

20.424
(0.031)

20.406
(0.039)

0.033
(0.873)

20.029
(0.889)

20.506
(0.008)
0.312

(0.121)

FIG. 5. Scree plots of the eigenvalues for each component
from the (a) simulated data (SIM) and (b) herbivorous zoo-
plankton data (ZOO). The solid line represents the eigen-
values from the basis data (i.e., nonstandardized), and the
dashed line represents the eigenvalues from the compositional
data (i.e., proportions).

strong correlation (r 5 20.64). Contrast this with our
interpretation with results when S5 is included in cal-
culating the proportions. In this case all correlations
are strongly positive except those including correla-
tions with S5 directly (Fig. 1). Had we chosen to delete
the variable S4 when calculating the row totals and
proportions, we would have found S1 and S2 to be
highly correlated (r 5 0.84), both variables S1 and S2
to be positively correlated with S3 (rather than nega-
tively when S5 is deleted), and all other variables to
have very strong negative correlations with S5. This
overall correlation structure again is influenced by the
constraint that the variances and covariances must sum
to zero.

Matrix ZOO (Table 3) shows a similar, although
more erratic effect. In this example variable H3 is de-
leted as it has the largest mean and variance as with
the simulated data example. This follows the approach
used with the simulated data. Some correlations remain
virtually unchanged, i.e., variables H2 and H5 have
correlations of 20.506 and 20.509 in the full com-
position and subcomposition, respectively. However
other variables change more substantially, e.g., H1 and
H4 have correlations of 20.424 and 20.808. Some
correlations change from having significant correla-
tions to values lacking significance at the 5% level, i.e.,
H2 and H4 have r 5 20.406 and 20.249 for the full
composition and subcomposition. The predictability of
the resultant correlations in the subcomposition is less
certain than with the simulated data SIM. In this field-
based example we see changes in the magnitude and
interpretation of the correlations between zooplankton,
but not the changes in the sign of the association, al-
though such changes exist with other field data sets.
The unpredictable nature and substantial change in cor-
relations obtained when using subcompositions make
for difficult interpretations in the results. This makes
traditional analyses and interpretations of compositions
unreliable and confusing, although Aitchison (1986)
provides suggested approaches in their analysis.

Principal components analysis

As demonstrated above, strong bivariate relation-
ships can arise as a result of converting data into com-
positional form. Similarly, observed correlations may
be reduced or reverse in their direction. The potential
for altering relationships is of even greater concern in
multivariate analyses where multiple variables are con-
sidered together. Many multivariate statistical methods
are used for data reduction or display as a means of
ordering the observations or variables based on patterns
of covariation in the data set. The implicit assumption
is that the summarized covariation represents nontrivial
information.

A principal components analysis (PCA) of the un-
correlated raw data SIM results in five eigenvalues with
values near 1 and each axis accounting for ø20% of
the total variation (Fig. 5a). This result indicates that
there are no nontrivial components (i.e., the variables
are uncorrelated with one another based on the broken-
stick model or a bootstrapped analysis; see Jackson
1993 for details). A PCA of the compositional data
leads to a different interpretation (Table 4) and sum-
mary of the patterns among observations (Fig. 6). The
first eigenvalue accounts for over 80% of the variation.
A naı̈ve interpretation of this result would lead to the
conclusion that the PCA was a useful summary and a
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TABLE 4. Eigenvector coefficients from a principal components analysis of the correlation
matrix of SIM. Results from a PCA of the basis and the composition are presented.

Variable

Eigenvector 1

Basis
Composi-

tion

Eigenvector 2

Basis
Composi-

tion

Eigenvector 3

Basis
Composi-

tion

S1
S2
S3
S4
S5

0.059
0.149
0.651

20.203
0.714

0.405
0.463
0.400
0.464

20.497

0.696
0.609

20.300
0.185
0.142

0.643
0.107

20.755
0.045
0.060

20.374
0.330
0.279
0.819

20.060

0.635
20.355

0.470
20.488

0.109

FIG. 6. Scatterplots of the first two components from a
principal components analysis of SIM using the (a) basis and
(b) composition in calculating the correlation matrix. Letters
refer to the points positioned at the ends of axes 1 and 2 on
the scatterplots.

single dominant component explained most of the vari-
ation in the data. The basis was composed of variables
with near-zero correlations and this is illustrated by the
first PCA. However, the constant-sum constraint would
lead us to conclude that potentially meaningful patterns
exist within the data if the underlying random nature
of the raw data is unknown (i.e., nontrivial axes exist).

In general, PCA of compositional data will sum-
marize a greater amount of the variance in the first
eigenvalue than the PCA of the raw data. This is due
to matrix closure and the resulting variance–covariance
relationship (i.e., the resultant matrix is singular and
at least the last eigenvalue of the compositional PCA
must equal zero). The relative magnitude of the eigen-
values is often used to determine how many compo-
nents contain nontrivial information and should, there-

fore, be considered meaningful. Due to considerable
differences that arise between PCAs of basis and com-
positional data, one must be cautious about the as-
sessment of nontrivial eigenvalues and the interpreta-
bility of components from a composition. Given the
widespread acceptance of the eigenvalue magnitude as
a useful guide in evaluating PCA results (Jackson
1993), it is crucial that researchers recognize this un-
derlying bias and effect. Although I present results us-
ing a simulated data set of uncorrelated variables, re-
searchers generally lack any knowledge of the basis or
fail to examine the relationships among the raw data
prior to transformation to compositional data.

Another example of this problem is illustrated with
ZOO. Some of the variables are correlated in the basis
(e.g., H2 and H3; Fig. 3) and these variables contribute
most to the first eigenvalue and associated eigenvector
(Table 5; Fig. 7). This relationship remains in the PCA
of the compositional data set. The second component
in the two analyses have similar eigenvalues, but the
eigenvector coefficients differ. With the basis data,
variables H4 and H5 contribute most to the second
eigenvector, whereas variables H1 and H4 contribute
most to this eigenvector in the compositional data. Al-
though it is easy for researchers to rationalize such
standardizations (e.g., only the patterns of relative
abundance rather than total abundance are expressed
in the compositional PCA), it is often unclear from
subsequent analyses just how much of this result is
meaningful pattern and how much of this is an artefact
(i.e., due to the constant-sum constraint; see Fig. 3).

Cluster analysis

Another approach to summarizing multivariate data
is cluster analysis (Legendre and Legendre 1983). For
example, variables may be grouped according to their
relative similarity across the observations. Such a clus-
ter analysis of the basis correlation matrix (Fig. 8a)
shows all cluster fusions occurring near zero. This is
expected given the uncorrelated nature of the simulated
basis data (Fig. 1). However, when the compositional
data matrix is clustered, the pattern changes consid-
erably (Fig. 8b). Variables S2 and S4 are initially clus-
tered at a value of 0.85. Variables S1 and S3 join the
S2–S4 pair at relatively high levels of positive simi-
larity. A strong negative relationship between these
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TABLE 5. Eigenvector coefficients for components 1–3 from principal component analyses of
the ZOO basis and composition.

Variable

Eigenvector 1

Basis
Composi-

tion

Eigenvector 2

Basis
Composi-

tion

Eigenvector 3

Basis
Composi-

tion

H1
H2
H3
H4
H5

0.261
0.638
0.619
0.320

20.196

0.226
20.492
20.551

0.333
0.541

20.251
20.125
20.120

0.650
0.696

20.709
20.227

0.381
0.525
0.155

0.909
20.048
20.237

0.022
0.339

0.035
0.547

20.392
0.664

20.324

FIG. 8. UPGMA cluster analysis based on a correlation
matrix of the variables (S1–S5 and H1–H5) from: (a) the basis
data of the simulated data (SIM); (b) the compositional data
of SIM; (c) the basis data of the zooplankton data (ZOO);
and (d) the compositional data of ZOO.

FIG. 7. Scatterplots of the first two components from a
principal components analysis of ZOO using the (a) basis
and (b) composition in calculating the correlation matrix. Let-
ters correspond to codes for the LEWG (Lake Ecosystem
Working Group) lakes (Paloheimo and Zimmerman 1993).

four variables and S5 is shown. An interpretation of
this result would lead one to conclude that meaningful
patterns exist such that variables S1 through S4 are
strongly and positively correlated, whereas S5 is neg-
atively related to the other variables. However, from
the simulation, we recognize that these patterns are due
only to the constant-sum constraint of the composi-
tional data and not to any meaningful relationships
among the variables. The cluster analysis of ZOO re-
veals differences between the basis and composition
solutions. The basis shows H2 and H3 joining together
with a strong positive correlation (Fig. 8c), whereas
these two size classes join based on a negative corre-
lation in the composition solution (Fig. 8d). There are
considerable differences between the two dendrograms

based on the group membership and level at which
cluster fusion occurs.

Clustering the observations leads to a similar prob-
lem. Because we have 200 observations in SIM, it is
impractical to show the dendrogram. However, the re-
sults differed substantially between the two dendro-
grams. Cluster analyses of the between-lake Euclidean
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FIG. 9. Cluster analysis of the zooplankton data (ZOO).
The letters correspond to codes for the LEWG (Lake Eco-
system Working Group) lakes (Paloheimo and Zimmerman
1983). In part (a), the lakes are clustered using UPGMA of
Euclidean distances calculated from the basis data, whereas
part (b) is based on the compositional data.

TABLE 6. Correlation matrix of centered log-ratio variables
for composition SIM.

Vari-
ables

Variables

S1 S2 S3 S4 S5

S1
S2
S3
S4
S5

0.641
0.412
0.630

20.799

0.613
0.843

20.906
0.619

20.782 20.906

distances from the zooplankton basis and composition
are shown in Fig. 9. These dendrograms show striking
differences in both the group memberships (e.g., com-
pare p1, s6, and s7), as well as the overall structure of
the dendrograms. The dendrogram of the composition
data shows a much stronger grouping in most instances
(i.e., the clusters join together earlier than in the basis
dendrogram).

Possible solutions to the problem

Centered log-ratios.—An approach based on cen-
tered log-ratio methods has been proposed (Aitchison

1986). Here all variables are retained in the analysis,
but standardized by dividing each variable by a de-
nominator based on a geometric composite of all vari-
ables. Specifically, the approach is based on the PCA
of the covariance matrix g where

gij 5 cov{log[xi/g(x)]}, log [xj/g(x)]; i, j 5 1,. . .D

and g(x) is the geometric mean of the variables, i.e.,
g(x) 5 P xi

1/D.
This approach has advantages in that: (1) all vari-

ables are retained and all possible pairwise compari-
sons are possible; (2) the pairwise relationships are
identical regardless of whether the basis or composi-
tional data are used. However, the method still has
problems. (1) Although the correlations of the original
simulated data, i.e., the basis, were zero, the variables
in the centered log-ratio basis and composition still
show strong correlations (Table 6). Because of closure
and the implicit dependency of the variables on one
another, as well as the division of all variables by an-
other composite variable, the variables lack statistical
independence. As a result we must be cautious in as-
signing statistical significance to the correlations or the
use of other forms of inferential statistics (e.g., re-
gression analysis). This is simply a modification of the
problem encountered in the correlation example. In this
instance, both the basis and composition have similar
correlation structure, but again the null hypothesis of
a correlation of zero appears to be invalid. (2) The
matrix is singular and we therefore lose one eigenvalue
or dimension in a principal components analysis. (3)
If zero values are present in the data (e.g., no individ-
uals were found for one or more species in one or more
sampling units), then the log-ratio values are undefined.
To circumvent this problem, Aitchison (1986) sug-
gested replacing each zero value with a small numerical
value. However, differences in the value chosen may
lead to substantially different solutions, i.e., no unique
solutions exist to alleviate the problem of zero values
in log-ratio solutions. Approaches based on ranking
methods have also been suggested (Bacon-Shone
1992), but he also identifies the problem of different
approaches to ranking (e.g., ranking across variables,
across observations, or the entire matrix) leading to
different solutions.
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FIG. 10. Scatterplot of the first two axes from a corre-
spondence analysis of SIM. The scale and position of points
within a plot are identical for analyses using either the basis
or composition, but the amounts of variance explained by
each axis differ between data formats. The letters refer to
points identified in Fig. 6.

Correspondence analysis as an alternative

Given many ecologists are trying to achieve sum-
maries of the patterns in species-sites relationships, a
solution to the problem of compositional data is cor-
respondence analysis (CA). Since this method consid-
ers only the proportional relationships between the
variables, it is unaffected by the decision to use either
the basis or the compositional data. One obtains iden-
tical solutions regardless of the form of data analyzed
(Fig. 10, which shows identical results for both the
basis and composition). In addition the eigenvalues ob-
tained from the CA are virtually identical for both the
analysis of the basis and of the composition. As a result
of these conditions, there is no ambiguity because of
differences in interpretation one obtains from the basis
vs. the composition. The double standardization in CA
and the chi-square distance measure implicitly removes
the difference between data formats. Correspondence
analysis enjoys widespread acceptance in community
ecology (Legendre and Legendre 1983, Digby and
Kempton 1987, Jongman et al. 1987). CA has also been
incorporated into the more complicated direct gradient
analysis of canonical correspondence analysis (ter
Braak 1987), thereby permitting direct comparisons of
community and environmental data. Given the wide-
spread development and acceptance of CA, it appears
to provide a means of ordinating community relation-
ships rather than using a log-ratio method in many
instances.

Conclusion

This paper is not an exhaustive treatise on the prob-
lems of compositional data. Rather it is an introduction
to the problem for ecologists and an illustration of some
solutions (e.g., Aitchison 1986). In some cases we can
use methods such as correspondence analysis that may

be particularly well suited to avoid problems when us-
ing compositional data. We may need to consider the
application of these methods more widely and formally
recognize the advantages they offer over other methods
(e.g., PCA). Furthermore, we need to explore the con-
sequences of using compositions with respect to our
interpretation and analyses. Consideration of those
methods developed elsewhere to solve these specific
problems (i.e., log-ratio methods; Aitchison 1986) is
essential. This area of analysis is of considerable im-
portance to ecologists, but given the relative unfamil-
iarity of biologists and statisticians to it, it is apparent
that additional work on the development of methods
must be done.

In many instances ecologists may have the choice of
whether to analyze the basis or compositional forms of
their data. In these instances we have the opportunity
to assess the effect that such standardizations have on
our interpretations. If similar conclusions are reached,
then it is of little consequence which form of data is
chosen. However in many instances we may be limited
to only the composition and this case is easily recog-
nized. In areas such as paleoecology only the propor-
tions of pollen or other fossil organisms are available
or researchers studying activity budgets or behavior
may represent the amount of time for different activities
as proportions. In other instances the use of compo-
sitional data may not be recognized readily. For ex-
ample, the enumeration of plankton abundance is often
done by counting a fixed number of organisms and
representing abundances as the proportion or percent-
age within each taxon. This is a common approach in
bioassessment methods (Plafkin et al. 1989, Novak and
Bode 1992). This implicitly converts the data to a com-
position and imposes the constant-sum constraint (i.e.,
as the abundance of one taxon increases, one or more
taxa must decrease in the total count). Researchers must
recognize these potential cases and their consequences
in examining results (e.g., relative abundance in com-
munity ecology). Criteria such as the ease of interpre-
tation or the ability to recover greater amounts of vari-
ation are poor measures to assess whether a data stan-
dardization has been useful. We must recognize that
these criteria may be biased due to the constant-sum
(matrix closure) condition.
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