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Abstract

Artificial neural networks are used to model phytoplankton succession and gain insight into the relative strengths of
bottom-up and top-down forces shaping seasonal patterns in phytoplankton biomass and community composition.
Model comparisons indicate that patterns in chlorophylla concentrations response instantaneously to patterns in
nutrient concentrations (phosphorous (P), nitrite and nitrate (NO2/NO3–N) and ammonium (NH4–H) concentra-
tions) and zooplankton biomass (daphnid cladocera and copepoda biomass); whereas lagged responses in an index
of algal community composition are evident. A randomization approach to neural networks is employed to reveal
individual and interacting contributions of nutrient concentrations and zooplankton biomass to predictions of phyto-
plankton biomass and community composition. The results show that patterns in chlorophylla concentrations are
directly associated with P, NO2/NO3–N and daphnid cladocera biomass, as well as related to interactions between
daphnid cladocera biomass, and NO2/NO3–N and P. Similarly, patterns in phytoplankton community composition
are associated with NO2/NO3–N and daphnid cladocera biomass; however show contrasting patterns in nutrient–
zooplankton and zooplankton–zooplankton interactions. Together, the results provide correlative evidence for
the importance of nutrient limitation, zooplankton grazing and nutrient regeneration in shaping phytoplankton
community dynamics. This study shows that artificial neural networks can provide a powerful tool for studying
phytoplankton succession by aiding in the quantification and interpretation of the individual and interacting contri-
butions of nutrient limitation and zooplankton herbivory on phytoplankton biomass and community composition
under natural conditions.

Introduction

Freshwater phytoplankton communities often undergo
pronounced seasonal succession (Reynolds, 1984).
The successional pattern in a lake is fairly repeatable
among years, and patterns among lakes are some-
what predictable according to trophic status (Reyn-
olds, 1984; Sommer et al., 1986). The study of the
forces driving phytoplankton succession, however, re-
mains a difficult task since the temporal dynamics of
algal communities are influenced by a complex array
of biotic and abiotic factors operating through both
direct and indirect pathways (Sommer, 1989; Vanni
& Temte, 1990; Sarnello, 1992; Carillo et al., 1995).

Although it is recognized that many factors are
involved in shaping patterns in phytoplankton succes-
sion, it is generally acknowledged that a combination
of resource limitation and predation play the primary
roles (Reynolds, 1984; Sommer et al., 1986; Sommer,
1989). Limitation of available phosphorous and ni-
trogen have been identified in numerous experimental
studies as the two essential nutrients regulating algal
biomass and community composition (see Sommer
(1989) for review). Competition among algae for these
nutrients will result in hierarchically structured com-
munities, dominated by competitively strong species.

The effects of zooplankton on phytoplankton com-
munities, on the other hand, are more complex to
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understand (Sterner, 1986). The most obvious impact
of zooplankton is through direct grazing of algae, res-
ulting in a reduction in overall phytoplankton biomass
(Lambert et al., 1986; Sterner, 1989). The potency of
herbivorous grazing will vary depending on the size
structure and species composition of the zooplankton
community (Bergquist et al., 1985). In general, it is
believed that mesozooplankters (e.g. daphnids) have
greater influence on phytoplankton biomass compared
to smaller species (e.g. copepods) because of greater
feeding efficiencies (Brooks & Dobson, 1965; Hall et
al., 1976; Lynch & Shapiro, 1981). Phytoplankton also
exhibit differential resistance to grazing resulting from
morphological differences in cell size, shape and pos-
session of hard coverings or gelatinous sheaths (Porter,
1976; De Bernard & Guissan, 1990).

While direct grazing on algal cells is arguably the
greatest effect zooplankton have on phytoplankton,
secondary or indirect effects of zooplankton grazing
have also been recognized as being important in reg-
ulating phytoplankton succession (e.g. Sterner, 1989;
Carillo et al., 1995; Queimaliños et al., 1998; Wick-
ham, 1998). By reducing algal populations, zooplank-
ton may increase theper capitaavailability of nutrient
resources for other algal species (Sterner, 1990; Urabe,
1993), and may contribute to the available pool of
nutrients by regenerating nutrients via excretion, eges-
tion and sloppy feeding (sensuLambert, 1978). In
some cases, the degree of phosphorous and nitrogen
regeneration can constitute a substantial proportion of
the nutrients required for phytoplankton growth (e.g.
Lehman, 1980; Urabe et al., 1995). Similar to the ef-
fects of direct grazing, the magnitude and variation of
nutrient regeneration is dependent on the composition
of the zooplankton community since fecal character-
istics differ between species (Sterner, 1989; Urabe,
1993).

Given the array of interactions between nutrient
availability and grazing zooplankton, and their effects
on algal communities, studies examining phytoplank-
ton succession have predominantly involved micro-
and meso-cosm experiments. These experiments are
designed to tease apart the relative contributions of
bottom-up and top-down forces influencing phyto-
plankton communities by performing manipulations
and examining the characteristics of the resulting in-
teractions (e.g. Sterner, 1986; Sommer, 1988; Vanni &
Temte, 1990; Carrilo et al., 1995; Hansen et al., 1997).
Despite the important insights that such experiments
have provided, detailed examinations of empirical data
are still lacking and consequently an understanding

of the factors influencing phytoplankton seasonal suc-
cession under natural conditions has not been clearly
established. Current emphasis on experiments most
likely arises from the fact that until recently, there
lacked appropriate statistical techniques for quantify-
ing and interpreting complex, non-linear interactions
among variables from empirical data. For instance,
regression analysis remains the most frequently used
technique for modeling ecological relationships, al-
though our confidence in the results is often limited
by the inability to meet a number of parametric as-
sumptions. Artificial neural networks are a promising
statistical approach in this regard, as they provide
a powerful, flexible non-linear statistical modeling
technique for uncovering patterns in ecological data
(Colassanti, 1991; Edwards & Morse, 1995; Lek et
al., 1996). Applications of neural networks are di-
verse within the scientific literature, ranging from so-
cial sciences to chemistry, and recently have received
more attention in the biological sciences for solving
pattern recognition problems (e.g. Lek et al., 1996;
Lek & Guégan, 1999). As such, a neural network
approach may be useful for gaining important in-
sight into the potentially complex influence of nutrient
limitation and zooplankton grazing on phytoplankton
succession.

This study investigates the influence of bottom-up
and top-down forces in shaping patterns of phyto-
plankton seasonal succession. This is accomplished
by using artificial neural networks to understand the
individual and interacting effects of available nutrients
(i.e. phosphorous and nitrogen) and zooplankton graz-
ing (i.e. daphnid cladocera and copepoda) on seasonal
patterns of phytoplankton biomass and community
composition. Detailed model comparisons are used
to assess whether phytoplankton biomass and com-
munity composition exhibit time lagged responses to
changing patterns in phosphorous, total nitrites and
nitrates, total ammonium, daphnid cladocera biomass
and copepoda biomass. Together, this study aims to
illustrate the utility of artificial neural networks for
gaining a greater understanding of the causal mech-
anisms controlling phytoplankton succession under
natural conditions.
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Table 1. Spearman rank correlations between the first axis of the
correspondence analysis and the percent phytoplankton composi-
tion by class

Phytoplankton class Phytoplankton Spearman Probability |rs|
edibility correlation (rs) > 0

Chrysophytes Highly edible 0.870 0.0011
Cryptophytes Edible 0.853 0.0017
Dinophytes Both 0.652 0.0410
Bacillariophytes Edible 0.646 0.0440
Chlorophytes Both 0.491 0.1490
Euglenophytes Both 0.467 0.1740
Cyanophytes Highly inedible −0.985 0.0001

Methods

Study site

The study area was Grenadier Pond, a 18.9-hectare
drainage lake located in south-central Ontario, Canada
(43◦ 38′ N, 79◦ 28′ W). Total phosphorus (µg/l), total
nitrites and nitrates (µg/l), total ammonium (µg/l),
chlorophyll a concentration (µg/l), phytoplankton
community composition, daphnid cladocera biomass
(mg/m3) and copepoda biomass (mg/m3) were col-
lected by the Ontario Ministry of Environment dur-
ing 1995 using standardized protocols. Samples were
taken at fortnight intervals during the period of thermal
stratification from mid-May through mid-September,
in the euphotic zone (3 m in depth) at the deepest point
in the lake.

Phytoplankton community composition

Compositional patterns in phytoplankton community
composition are summarized using correspondence
analysis. Data reduction by means of correspondence
analysis aids in the interpretation of phytoplankton
community dynamics by producing a low-dimensional
ordination space in which similar species and samples
are close together and dissimilar entities are far apart
(Gauch, 1982). The first dimension, by definition,
captures most of the total variance in the original vari-
ables and is used as a single index characterizing the
change in phytoplankton community structure in time,
hereafter called the phytoplankton community index
(PCI).

In addition to summarizing overall changes in
phytoplankton composition, it would be optimal to
have the ability to rank phytoplankton taxa in terms of
their relative grazing susceptibility in order to examine

in greater detail the effects of grazing by zooplank-
ton. Unfortunately, such a task is not entirely feasible
due to overwhelming variation in morphological and
chemical characteristics of phytoplankton and feeding
modes among freshwater zooplankton. However, al-
though a definite ranking cannot be achieved, there
are still some generalities can exist that may aid in
studying the contribution of herbivory on the dynam-
ics of phytoplankton community composition through
time. I incorporated the relative susceptibilities of
phytoplankton classes to grazing in two ways. First,
potential differences among zooplankton grazers are
assessed by examining the influence of two compon-
ents of the zooplankton community on phytoplankton
succession: daphnid cladocera biomass and copepoda
biomass. Second, phytoplankton taxa are classified
as ‘edible’ and ‘inedible’ types (sensuPorter, 1976)
based on size and possession of hard coverings or
gelatinous sheaths (Table 1). Here, I briefly describe
the rationale behind these divisions. Chrysophytes
are mostly non-gelatinous, unicellular algae lacking
a rigid cell wall (bound only by a cytoplasmic mem-
brane) causing this class to be considered highly edible
(Wetzel, 1982; Vanni & Temte, 1990). Cryptophytes
and bacillariophytes are also primarily non-gelatinous,
unicellular algae, making them generally edible. Dino-
phytes contain both naked and armoured types of
cells (Wetzel, 1982), while chlorophytes contain an
array of colonial, gelatinous types and individual, non-
gelatinous types, potentially making these classes both
edible and inedible to zooplankton. Euglenophytes are
flagellates that lack cell walls, and live most of the
time as solitary cells, causing them to be considered
edible. Lastly, the majority of the cyanophytes are en-
closed in gelatinous sheaths either individually or in
colonies, making them relatively inedible to grazing
zooplankters. Although algal edibility was charac-
terized at a coarse taxon scale, this classification is
satisfactory for the purposes of this study.

Artificial neural networks

Artificial neural networks were used to model
nutrient–phytoplankton–zooplankton relationships in
time. One hidden-layer feedforward neural networks
trained by the backpropagation algorithm (Rumelhart
et al., 1986) were used since this family of networks is
considered universal approximators of any continuous
function (Hornick et al., 1989). Figure 1 illustrates
the architecture of the neural networks used in this
study. The networks were comprised of an input layer
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Figure 1. One-hidden layer, feedforward neural network design.

containing five neurons representing each of the pre-
dictor variables, i.e. concentrations of phosphorus,
ammonium, nitrites and nitrates, and total biomass
of daphnid cladocera and copepoda. A single hidden
layer was chosen because it is generally satisfactory
for statistical applications (Bishop, 1995), greatly re-
duces computational time, and often produces similar
results compared to multiple hidden layers (Kurková,
1992). The optimal number of neurons in the hid-
den layer was determined empirically by comparing
the performances of different networks, with 1 – 20
hidden neurons, and choosing the number that pro-
duced the greatest network performance. The output
layer contained one neuron representing the predicted
chlorophylla concentration or PCI value. Additional
bias neurons with a constant output, playing a similar
role to that of the constant term in multiple regression,
were added to the hidden and output layers.

Each neuron (excluding the bias neurons) is con-
nected to all neurons of adjacent layers with an axon.
The ‘state’ or ‘activity level’ of each neuron is de-
termined by the input received from the other neurons
connected to it. The states of the input neurons are
defined by the incoming signal (i.e. values) of the pre-
dictor variables at the entry of the network. The state
of the other neurons is evaluated locally by calculating
the weighted sum of the incoming signals from the
neurons of the previous layer. The entire process can

be written mathematically as:

yk = φo
βk +∑

j

wjkφh

(
βj +

∑
i

wij xi

) , (1)

wherexi are the input signals,yk are the output sig-
nals, wij are the weights between input neuroni to
hidden neuronj, wjk are the weights between hid-
den neuronj and output neuronk, βj andβk are the
bias associated with the hidden and output layers, and
φh andφo are activation functions for the hidden and
output layers. There are several activation functions
(see Bishop, 1995) and this study used the logistic (or
sigmoid) function.

The backpropagation algorithm trains the network
by iteratively adjusting all the connection weights
among neurons, with the goal of finding a set of
connection weights that minimizes the error of the net-
work, i.e. sum-of-the-squares between the actual and
predicted output (least squares error function). Ob-
servations are sequentially presented to the network,
and weights are adjusted after each output is calcu-
lated depending on the magnitude and direction of the
error. This interative technique of minimizing the er-
ror is known as gradient descent, where weights are
modified in the direction of greatest descent, traveling
‘downhill’ in the direction of the minimum. Learn-
ing rate (η) and momentum (α) parameters (varying
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as a function of network error) were included dur-
ing network training to ensure a high probability of
global network convergence (see Bishop, 1995 for
details), and a maximum of 1000 iterations for the
backpropagation algorithm to determine the optimal
axon weights.

In the neural network, the connection weights
between neurons are the links between the inputs and
the outputs and, therefore, are the link between the
problem and the solution. The weights contain all the
information about the network. The relative contri-
bution of the independent variables to the predictive
output of the neural network depends primarily on
the magnitude and direction of the connection weight
between the neurons. In this study, Neural Interpreta-
tion Diagrams (sensuÖzesmi & Özesmi, 1999) were
constructed to visually interpret the magnitude and
direction of the connections neurons of the networks.
Using the connection weights, relationships between
nutrient concentrations and zooplankton biomass, and
chlorophylla concentrations and PCI could be iden-
tified and quantified. Next, a randomization test for
artificial neural networks was used to assess the stat-
istical significance of connections weights and input
variable contributions (Olden, 2000; Olden & Jack-
son, 2000). This approach randomizes the response
variable, then constructs a neural network using the
randomized data and records all input-hidden-output
connection weights (product of the input-hidden and
hidden-output weights). This process is repeated a
large number of times to generate a null distribu-
tion for each input-hidden-output connection weight,
which is then compared to the observed values to cal-
culate the significance level. The randomization test
provides a pruning technique for eliminating connec-
tion weights that have minimal influence on the net-
work output and identifies independent variables that
significantly contribute to the prediction process. By
removing connection weights that do not contribute
significantly to predicting chlorophylla concentra-
tion or phytoplankton community composition, the
individual and interacting effects of nutrient concen-
trations and the zooplankton community can be more
readily identified and interpreted.

Neural network design for modeling phytoplankton
succession

Prior to training the neural network, the data must be
modified so that the dependent and independent vari-
ables exhibit particular distributional characteristics.

The dependent variable must be converted in the range
[0..1] so that it conforms to the demands of the trans-
fer function used (sigmoid function) in the building of
the neural network. The independent variables must be
converted toz-scores to standardize the measurement
scales of the inputs into the network, and thus to en-
sure that same percentage change in the weighted sum
of the inputs causes a similar percentage change in the
unit output.

A number of predictor variable combinations were
considered for modeling temporal patterns in Chla
concentrations and phytoplankton community index
(PCI). Four network designs were trained for predict-
ing values of Chla and PCI at timet as a function of
phosphorous (P), nitrite and nitrate (NO2/NO3–N) and
ammonium (NH4–H) concentrations, and total daph-
nid cladocera (DC) and copepoda (C) biomass. The
networks contained each of the following five input
variables:

network 1: P(t) · NH4− H(t) ·
NO2/NO3− N(t) · DC(t) · C(t)
network 2: P(t − 1) ·NH4− H(t − 1) ·
NO2/NO3− N(t − 1) ·DC(t) · C(t)
network 3: P(t) · NH4− H(t) ·
NO2/NO3− N(t) · DC(t − 1) · C(t − 1)

network 4: P(t − 1) ·NH4− H(t − 1) ·
NO2/NO3− N(t − 1) ·DC(t − 1) ·C(t − 1)

Network 1 assumes that Chla concentrations and
values of PCI change instantaneously to fluctuations
in nutrient concentrations and zooplankton biomass,
whereas the other three designs account for the idea
that phytoplankton communities may exhibit a time
lagged response to either nutrient concentrations (net-
work 2), to zooplankton biomass (network 3), or both
(network 4). Performance of these networks were as-
sessed using the Pearson product-moment correlation
between predicted and actual Chla and PCI val-
ues, and the root-mean-square-of-error (RMSE) of the
predicted values. The Pearson correlation provides a
measure of model accuracy, with better models rep-
resented by correlation coefficients approaching 1.
RMSE measures model precision, with small values
representing high precision and large values being
indicative of poor precision.

Statistical analyses were performed using S-Plus
software (version 4.5) and computer routines for train-
ing the neural networks and the randomization proto-
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Figure 2. Joint correspondence plot of trends in phytoplankton community composition across sampling dates. Symbols differentiate sampling
dates (circles) and phytoplankton classes (squares): BAC (bacillariophytes), CHL (chlorophytes), CHR (chrysophytes), CRY (cryptophytes),
CYA (cyanophytes), DIN (dinophytes) and EUG (euglenophytes).

cols were written in MatLab programming language
(version 5.3).

Results

Phytoplankton community composition

The CA of the phytoplankton community summarizes
approximately 75% of the total variance in the first two
axes, with the first axis explaining a significant pro-
portion of the total variance in the original variables
(43.8%) based on the broken-stick model (Jackson,
1993). Samples clustered close together in the joint
species-sample plot (Figure 2) indicate sampling dates
sharing similar phytoplankton community composi-
tions, whereas samples positioned at opposite ends of
the plot contain distinctly different fauna. Figure 2
separates sampling dates dominated by cyanophytes,
positioned towards the negative end of the first axis,
from sampling dates dominated by bacillariophytes,
chrysophytes, cryptophytes and dinophytes, located
towards the positive end on the first axis. The strength
of this gradient is represented by the Spearman rank
correlation coefficient for the relationship between the
scores of the first principal component of the CA and
the percent composition of the phytoplankton classes

(Table 1). Phytoplankton diversity also increases with
increasing CA axis I scores, with a community al-
most completely comprised of cyanophytes located
in the left of Figure 2 and a highly diverse and ho-
mogeneous (in terms of class dominance) community
located in the right. Furthermore, based on phyto-
plankton size, it is evident that a transition occurs from
inedible to edible types of algae along the first axis
(Table 1). Therefore, the scores of CA axis I (PCI)
provide a summary of the dominant temporal patterns
in phytoplankton community composition (i.e. relat-
ive dominance of particular phytoplankton classes and
class diversity) and the edibility of algae present in the
lake.

Neural networks for phytoplankton succession

The degree of predictability of chlorophylla concen-
trations and PCI varies greatly among network designs
depending on the type and state of the input variables
used in the network. Models using either lagged nutri-
ent concentrations or lagged zooplankton biomass (i.e.
network 2 and 3) exhibit weak performance for both
Chl a and PCI (Table 2). The poorest model perform-
ance is provided by lagged values of daphnid clado-
cera and copepoda biomass. In contrast, networks 1
and 4 predict Chla and PCI with relatively high ac-
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Table 2. Performance of neural networks for predicting chlorophylla concentration (Chla) and phytoplankton community composition (PCI)
as a function of P, NH4–H, NO2/NO3–N (Nutrients) and biomass of daphnid cladocera and copepoda (Zooplankton). ‘Lagged’ refers to
predicting values of Chla and PCI at timet based on values of the independent variables at timet-1. Reported values are the number of hidden
neurons in the network (# HN), correlation coefficient between observed and predicted values (r) and root-mean-square-of-error (RMSE) of
the predicted values

Network Dependent Independent # HN r RMSE

1 Chla Nutrients – Zooplankton 2 0.884 29.74

2 Lagged Nutrients – Zooplankton 3 0.295 31.65

3 Nutrients – Lagged Zooplankton 1 0.031 41.30

4 Lagged Nutrients – Lagged Zooplankton 3 0.767 32.08

1 PCI Nutrients – Zooplankton 2 0.807 0.633

2 Lagged Nutrients – Zooplankton 2 0.275 0.952

3 Nutrients – Lagged Zooplankton 1 0.081 1.345

4 Lagged Nutrients – Lagged Zooplankton 3 0.925 0.351

curacy and precision, respectively. The best network
for explaining patterns in Chla concentrations uses
values of the input variables at timet (network 1),
whereas PCI is best predicted using lagged values
of all the input variables, i.e. timet-1 (network 4).
The connection weights of the two best networks are
examined in detail to quantify the individual and in-
teracting contributions of nutrient concentrations and
zooplankton biomass for explaining patterns in Chla
concentrations and PCI values.

Factors influencing chlorophyll a concentrations and
phytoplankton community composition (PCI)

Here I first briefly describe the interpretation of con-
nection weights in neural networks before discussing
the nutrient–phytoplankton–zooplankton relationships
observed in Grenadier Pond. Figure 3 illustrates the
neural interpretation diagrams for Chla concentration
(network 1) and PCI (network 4). In these diagrams,
the relative magnitude of the connection weights is
represented by line thickness (i.e. thicker lines repres-
enting greater weights) and line shade represents the
direction of the weights (i.e. black lines representing
positive, excitator signals and gray lines represent-
ing negative, inhibitor signals). Input variables with
larger connection weights represent greater intensit-
ies of signal transfer and, therefore, have a greater
influence on the output (Chla or PCI) compared to
variables with smaller weights. Negative connection
weights represent inhibitory effects on neurons (re-
ducing the intensity of the incoming signal), while
positive connection weights represent excitatory ef-

fects on neurons (increasing the intensity of the in-
coming signal). The relationship between the inputs
and outputs is determined in two steps since there
are first input-hidden layer connections and second
hidden-output layer connections. Positive effects of
input variables are depicted by positive input-hidden
and positive hidden-output connection weights, or
negative input-hidden and negative hidden-output con-
nection weights. Negative effects of input variables are
depicted by positive input-hidden and negative hidden-
output connection weights, or negative input-hidden
and positive hidden-output connection weights. There-
fore, the multiplication of connection weight direction
(i.e. positive or negative) delineates the effect each
input variable has on the response variable. Interac-
tions among predictor variables are identified as input
variables with similar (i.e. same direction) or con-
trasting connection weights (i.e. opposite direction)
entering the same hidden neuron. The total contri-
bution of an input variable is calculated as the sum
of the products of the input-hidden-output connec-
tion weights. Individual and interacting influences of
nutrient concentrations and zooplankton biomass on
predicted values of Chla concentrations and PCI are
interpreted when connection weights differed signi-
ficantly from chance based on the randomization test
(usingα=0.05).

Concentrations of Chla are positively correlated
to P, and negatively correlated to NO2/NO3–N, and
daphnid cladocera biomass through hidden neuron A
(Figure 3a). Examining both hidden neurons it is evid-
ent that daphnid cladocera biomass positively interacts
with available NO2/NO3–N, and negatively interacts
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Figure 4. Relative importance (% of total contribution) of nutrient and zooplankton variables in predicting chlorophylla concentration and
phytoplankton community index (PCI) based on the sum of connection weights joining an input neuron and the output neuron.∗ notes sum of
connection weights that statistically different from zero (α < 0.05).

with P. Figure 3a shows no evidence for variable in-
teractions with copepoda biomass, since this input
neuron does not exhibit significant connection weights
with contrasting effects at any single hidden neuron
with any of the other variables. Accounting for all
connection weights between the input and output neur-
ons, Chl a is positively correlated with P, NH4–H
and copepoda biomass, and negatively correlated with
NO2/NO3–N and daphnid cladocera biomass (Figure
4). Based on the randomization test, P, NO2/NO3–N
and daphnid cladocera biomass significantly contrib-
ute to predictions of Chla concentrations.

PCI is positively correlated to NO2/NO3–N (hid-
den neurons B and C), NH4–H (hidden neuron C)
and daphnid cladocera biomass (hidden neuron B)
(Figure 3b). Copepoda biomass illustrates contrasting
correlations with PCI through hidden neurons A and
B. Positive interactions between daphnid cladocera
biomass and NO2/NO3–N (hidden neuron B), and neg-
ative interactions between copepoda and NO2/NO3–N
(hidden neuron B) and P (hidden neuron A) are also
evident. Interestingly, unlike Chla, daphnid cladocera
and copepoda biomass appear to exhibit an interacting

effect on PCI through hidden neuron B. Accounting
for all connection weights, P, NO2/NO3–N, NH4–H
and daphnid cladocera biomass are positively asso-
ciated with patterns in PCI, whereas copepoda bio-
mass shows a negative association (Figure 4). Based
on the randomization test, NO2/NO3–N and daph-
nid cladocera biomass exhibited significant positive
relationships with PCI.

Discussion

Duarte (1990) has suggested that lagged algal growth
responses are a general phenomenon in aquatic eco-
systems. Time lags are believed to result from a
combination of factors, including small proportions
of viable algal cells, biochemical adjustments prior
to rapid growth, and the need to establish threshold
concentrations of required nutrients (Duarte, 1990).
Comparison of the neural network models indicate
that patterns in chlorophylla concentrations (a sur-
rogate of algal standing crop and, therefore, hereafter
referred to as phytoplankton biomass) did not exhibit
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time lagged responses to patterns in nutrient concen-
trations and zooplankton biomass; whereas lagged
responses in phytoplankton community composition
were evident. These results suggest that although re-
sponses of algal biomass to bottom-up and top-down
forces may be instantaneous; changes in the compos-
ition of the phytoplankton community are delayed.
Admittedly, caution should be employed when inter-
preting these results since the temporal resolution of
data examined this study was perhaps not entirely fine
enough to detect all time lags. For instance, lagged
responses of phytoplankton biomass may occur at
much shorter frequency than the biweekly frequency
of sampling (e.g. Sephton & Harris, 1984; Harris &
Trimbee, 1986; Matveev, 1995). Regardless, given
the strong empirical basis for the existence of time
lags, investigators should recognize the importance
of accounting for time lags prior to testing for asso-
ciation between variables, especially when studying
phytoplankton community dynamics.

Influence of nutrient concentrations on phytoplankton
succession

In most pelagic ecosystems, the availability of phos-
phorous and nitrogen are recognized as important vari-
ables limiting the growth rate of phytoplankton. This
study suggests than phosphorous and nitrite/nitrate
concentrations influence temporal patterns in phyto-
plankton biomass, whereas nitrite/nitrate concentra-
tions influence patterns in algal community compos-
ition. Increasing concentrations of nitrite/nitrate may
differentially influence algal species, resulting a shift
from inedible (i.e. cyanophytes) to edible algal types,
as well as greater homogeneity in terms of class dom-
inance in the community. Cyanophytes are capable of
fixing nitrogen, and are presumed to have a greater
advantage when nitrogen levels are low. When the
availability of nitrogen increases, other phytoplankton
classes might differentially benefit, thus resulting in
a decrease of cyanophytes and an increase in other
classes.

Influence of zooplankton on phytoplankton succession

This study shows that the potency of herbivorous graz-
ing may vary depending on the species composition
of the zooplankton community. A strong negative
correlation between daphnid cladocera biomass and
phytoplankton biomass was observed, whereas cope-
poda exhibited no such relationship. These findings
suggests that direct grazing by mesozooplankters, i.e.

daphnid cladoceran, are a stronger force shaping algal
standing biomass compared to smaller species, i.e.
copepods, potentially a result of greater feeding effi-
ciencies (Brooks & Dobson, 1965; Hall et al., 1976;
Lynch & Shapiro, 1981).

In addition to effects on total phytoplankton bio-
mass, the zooplankton community may impact the
phytoplankton community in a class-specific manner.
Daphnid cladocera biomass was found to correspond
to decreasing cyanophytes and increasing bacillario-
phytes, chrysophytes, cryptophytes and dinophytes,
whereas the opposite relationship was observed for
copepoda biomass. This suggests that members of the
zooplankton community represent contrasting forces
shaping the composition of the phytoplankton com-
munity. For instance, daphnid cladocerans may be
selectively feeding on larger algal classes (i.e. cyan-
ophytes) since they are less gape limited compared to
copepods (Burns, 1968), which in contrast may be act-
ively discriminating between phytoplankton, perhaps
using chemical characteristics (Butler et al., 1989).

Phytoplankton also exhibit differential resistance
to grazing resulting from morphological differences in
cell size, shape and possession of hard coverings or
gelatinous sheaths (Porter, 1976). Variation in algal
‘edibility’ cause zooplankton to consume particular
algal classes more readily, which consequently plays
an important role in shaping community composition.
It is generally believed that zooplankton consume lar-
ger, less digestible algae at slower rates than smaller,
more delicate forms (Porter, 1977b), thus favouring
‘edible’ (i.e. small, naked) over ‘inedible’ (i.e. large,
gelatinous) forms of algae during periods of zooplank-
ton grazing (Porter, 1973, 1977a; DeMott, 1983).
For example, cyanophytes (blue-green algae) are re-
cognized as being unsuitable and inedible food for
crustacean plankton (Brooks & Dobson, 1965; Sha-
piro et al., 1975). The difficulty that zooplankton may
have in breaking blue-green colonies, as well as the
clogging of their filtering apparatus have been iden-
tified as two of the main causes of this phenomenon
(Burns, 1968). However, numerous studies have pro-
duced contrasting and inconclusive results regarding
the relationships between blue-green algae and herb-
ivorous zooplankton (see De Bernardi & Guissani
(1990) for review). My results showed that increas-
ing daphnid cladoceran biomass corresponded with a
shift in phytoplankton community dominated by large,
gelatinous cells to small, non-gelatinous cells. This
suggests that daphnid cladocerans illustrate selective
grazing on larger, gelatinous size fractions of algae,
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as compared to smaller, naked size fractions, which
agrees with more recent studies that show that high
biomass of large grazing zooplankton does not always
favour inedible fractions of algae (e.g., Sarnelle, 1992;
Carpenter et al., 1996; Kasprzak & Lathrop, 1997).

In addition to the direct influence of zooplank-
ton on phytoplankton succession, secondary effects of
grazing have also shown be important (e.g. Sterner,
1986, 1989, 1990; Vanni, 1987; Carillo et al., 1995;
Queimaliños et al., 1998; Wickham, 1998). For in-
stance, elements released by zooplankton (i.e. meta-
bolites, feces, food breakage at feeding) are in a
soluble form which are easily and rapidly available for
all algae in small, highly concentrated patches, as well
as being available in high concentrations in the gut of
these zooplankton (Sterner, 1990; Hessen & Ander-
son, 1992). Algae that survive the gut passage might
lose some sheath material and cells to the grazers, but
are more than compensated by gaining access to a
nutrient rich environment where they can take up nu-
trients from both algal remains and from zooplankton
metabolites. The fact that daphnid cladocera biomass
was shown to positively interact with NO2/NO3–N
and negatively interact with phosphorous concentra-
tions indicates that some form of nutrient regenera-
tion may exist. For instance, the bottom-up control
of algal biomass may weaken with increasing daph-
nid cladocera biomass due to increased additions of
NO2/NO3–N. In this case, daphnid cladoceran ef-
fects could follow an indirect pathway where patterns
in phytoplankton biomass and community structure
reflect class-specific responses to NO2/NO3–N en-
richment. Interestingly, interactions between daphnid
cladocera biomass and NH4–H were not observed,
which is somewhat surprising given that ammonium
is rapidly dissolved and is considered the greater bio-
logically available form of nitrogen (Lehman, 1980;
Sterner, 1989). The lack of interaction between cope-
poda biomass and available nutrients supports the
notion that nutrient regeneration is limited in copepoda
since they enclose their fecal materials in membrane-
covered pellets which quick sink out of the water
column. This is compared to cladocerans that com-
monly release fecal matter in a soluble state (Lambert,
1978; Sterner, 1989). Moreover, this finding also
supports the idea that the magnitude of nutrient re-
generation by zooplankters is inversely related to body
size (Burns, 1968).

Together, differential digestion and access to ad-
ditional nutrients by phytoplankton may create a
dynamic relationship between zooplankton nutrient

regeneration (a function of zooplankton community
composition) and phytoplankton species still present
to utilize the available nutrients (a function of zo-
oplankton grazing and phytoplankton susceptibility to
grazing) (Porter, 1973, 1976, 1977b). For example, the
net effect of increasing daphnid cladocera biomass on
phytoplankton succession may in fact be a combina-
tion of increased grazing and increased nutrient regen-
eration, which could help explain the corresponding
increase in homogeneity of phytoplankton dominance
observed with increasing daphnid cladocera biomass.

Conclusions

Understanding the relative contributions of zooplank-
ton herbivory and nutrient limitation on phytoplankton
biomass and community composition and interpreting
the myriad of pathways in which these factors oper-
ate will result in significant insights into the dynamics
of ecological processes occurring in aquatic ecosys-
tems. Knowledge regarding nutrient–phytoplankton–
zooplankton relationships is not only important for
understanding the dynamics of phytoplankton suc-
cession, but also for the study of zooplankton com-
munities and aquatic management. For instance, re-
cent experimental studies indicate that production and
composition of particular zooplankton are influenced
by the relative elemental contents of consumed food
(Hessen, 1992; Urabe & Watanbe, 1992; Sommer,
1992; Sterner, 1993). Therefore, if zooplankton can
affect changes in nutrient availability through fecal
deposition of soluble nitrogen and phosphorous, such
changes may in fact facilitate the growth of zooplank-
ton indirectly through promoted growth of phyto-
plankton. Furthermore, an accurate understanding of
the factors shaping phytoplankton communities and
the specific responses of different algal classes to top-
down forces is required by lake managers prior to
the development of biomanipulation protocols for any
particular the waterbody since water transparency is
directly related to the type of algal classes present
(Porter, 1977b; Berquist et al., 1985; Carpenter et al.,
1987).

Although the mechanisms driving phytoplankton
succession cannot be inferred from correlative stud-
ies, artificial neural networks provide a powerful tool
for studying relationships between biotic and abiotic
factors and the dynamics of phytoplankton communit-
ies under natural conditions. Neural networks have an
important advantage over approaches such as regres-
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sion or path analysis in that they can accommodate
interactions among independent variables without any
a priori specification. Thus neural networks are partic-
ularly beneficial in studies of phytoplankton succes-
sion given the array of possible variable interactions
between nutrient concentrations and zooplankton bio-
mass, and their subsequent effects on algal biomass
and community structure.
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