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Abstract

Principal component analysis is one of the most widely applied tools in order to summarize com-
mon patterns of variation among variables. Several studies have investigated the ability of individual
methods, or compared the performance of a number of methods, in determining the number of com-
ponents describing common variance of simulated data sets. We identify a number of shortcomings
related to these studies and conduct an extensive simulation study where we compare a larger number
of rules available and develop some new methods. In total we compare 20 stopping rules and pro-
pose a two-step approach that appears to be highly effective. First, a Bartlett’s test is used to test the
significance of the first principal component, indicating whether or not at least two variables share
common variation in the entire data set. If significant, a number of different rules can be applied to
estimate the number of non-trivial components to be retained. However, the relative merits of these
methods depend on whether data contain strongly correlated or uncorrelated variables. We also esti-
mate the number of non-trivial components for a number of field data sets so that we can evaluate the
applicability of our conclusions based on simulated data.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) is one of the most common methods used by data
analysts to provide a condensed description and describe patterns of variation in multi-
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variate data sets. Moreover, PCA is also able to retain meaningful information in the early
axes whereas variation associated to experimental error, measurement inaccuracy, and/or
rounding is summarized in later axes (Gauch, 1982). The ability to identify relationships
by generating linear combinations of variables showing common trends of variation can
contribute substantially to the recognition of patterns in the data. However, the issue of de-
termining whether or not a given axis summarizes meaningful variation (i.e., non-trivial ver-
sus trivial components) remains unclear in many cases. There are important considerations
about the issue of retaining the correct number of axes. One pitfall is that when the correct
number of non-trivial principal components is not retained for subsequent analysis, either
relevant information is lost (underestimation) or noise is included (overestimation), causing
a distortion in underlying patterns of variation/covariation (Férre, 1995; seeLawrence and
Hancock, 1999for a discussion). Determining the number of non-trivial principal com-
ponents remains one of the greatest challenges in providing a meaningful interpretation
of multivariate data and has been a long-standing issue in both biological and statisti-
cal literature (e.g.,Pimentel, 1979; Karr and Martin, 1981; Stauffer et al., 1985; Zwick and
Velicer, 1986; Jackson, 1991; Grossman et al., 1991; Jackson, 1993; Férre, 1995;
Franklin et al., 1995; Jolliffe, 2002), though the issue of providing meaningful interpre-
tation to each axis is also important (Peres-Neto et al., 2003).

A variety of stopping rules to estimate the number of non-trivial axes has been proposed
(Jackson, 1991; Jolliffe, 2002). Several studies have investigated the ability of individual
methods or compared the performance of a number of methods in determining the number
of non-trivial components of simulated data sets (Reddon, 1985; Zwick and Vellicer, 1986;
Grossman et al., 1991; Buja and Eyuboglu, 1992; Jackson, 1993; Férre, 1995). Generally,
these studies established statistical populations that followed particular correlation struc-
tures where the number of non-trivial components was known; subsequently samples were
drawn from each population and the reliability of sample tests in estimating the known
number of non-trivial components was determined. Despite all these efforts, we identify
that certain elements still need to be addressed: (1) the robustness of several rules (e.g.,
randomization methods) has not been investigated or compared; (2) usually only a small
number of correlation scenarios was considered; (3) the number of samples per correlation
scenario was usually extremely small (in most cases 5 or less) so that differences found
between methods could be due largely to sampling error in simulation experiments; (4) the
influence of uncorrelated data (i.e., variables having zero correlations with the others) was
not investigated; and, (5) the marginal distribution considered was usually normal, produc-
ing a limited assessment of the performance against departure from normality. Herein we
conduct an extensive simulation study where we compare a large number of rules available
in the literature, and develop some new methods. We also estimate the number of non-trivial
components for a number of biological data sets so that we can evaluate how applicable our
conclusions based on the simulated data may be.

2. Presentation of methods

For all rules, components were assessed individually and sequentially from the largest
eigenvalue to the smallest; once a particular axis was considered as trivial (i.e., non-
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significant), all other subsequent components were considered to be trivial as well; hence
the term “stopping rule”. Acronyms are provided for each rule and are used throughout
the text. We restricted the analysis to the case of PCA based on correlation matrices
given that variables are standardized (i.e., mean= 0.0 and variance= 1.0) and hence
simulated scenarios are simpler to design. Note that in most fields, the majority of PCA
applications are performed on correlation matrices (Jackson, 1991, p. 80). In addition,
the definition of non-trivial dimensions applied here only applies to correlation matri-
ces (see Section 3 for further discussion). Note that we did not consider cross valida-
tion (Jolliffe, 2002) given the large number of variations around this method including
types of measures and methods of testing. This class of methods would probably deserve
a separate study. The Scree plot (Jolliffe, 2002, p. 117) was also not directly considered
here given its subjective nature. However, a variant based on the a permutation percentile
interval (Jolliffe, 2002; see Randomization methods based on eigenvalues below) was
considered.

2.1. Stopping rules based on confidence intervals

Maximum-likelihood hypothesis tests have been developed for principal component
eigenvalues (e.g., sphericity test); however they are quite complicated and sensitive to depar-
ture from multivariate normality (Seber, 1984, p. 197) and to large sample sizes (Crawford,
1975). Here we consider three methods based on quasi-inferential procedures, namely par-
allel analysis, randomization test and bootstrap resampling methods.

2.1.1. Parallel analysis
This method involves a Monte Carlo approach to generate a large number of eigenvalues

based on simulated data sets that are equivalent in size to the observed data set of interest,
but comprise independent normally distributed variables (i.e., spherical population). These
eigenvalues are then used to build confidence intervals. This method was initially suggested
by Horn (1965)and has been reviewed in ecological and statistical studies (e.g.,Zwick and
Velicer, 1986; Buja and Eyuboglu, 1992; Franklin et al., 1995). The Monte Carlo protocol
used here was: (1) generate independent normally distributed variables N (0,1) respecting
the original dimensions of the data matrix being analyzed; (2) perform a PCA on the correla-
tion matrix of the data matrix generated in step 1, retaining the eigenvalue for each axis; (3)
repeat steps 1 and 2 a total of 1000 times; and (4) calculate for each axis the percentile inter-
vals (e.g., 95% for an� = 0.05), which are then used as standard critical values for assessing
eigenvalues. If observed values exceed the critical value, then we reject the null hypothe-
sis according to the pre-established significance level (acronym:PA). AlthoughBuja and
Eyuboglu (1992)noted that the method is robust against normality, Parallel analysis is basi-
cally parametric by definition given that is based on independent normally distributed data.
Here, we consider two classes of distribution-free tests (i.e., randomization and bootstrap
procedures) that may provide a more robust assessment when the normality assumption is
violated.
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2.1.2. Randomization methods based on eigenvalues
The randomization protocol was conducted as follows: (1) randomize the values within

variables in the data matrix; (2) conduct a PCA on the reshuffled data matrix; and (3) repeat
steps 1 and 2 a total of 999 times. In each randomization, we evaluated four test statis-
tics based on the eigenvalues: (1) the observed eigenvalue for axisk (i.e., �k; acronym:
Rnd-Lambda; e.g.,ter Braak, 1988); (2) a Pseudo-F-ratio calculated as each eigenvalue
divided by the sum of the remaining (or smaller) eigenvalues (i.e.,�k/

∑p
j=k+1�j ), where

p is the number of variables; acronym:Rnd-F; seeter Braak, 1990); (3) the ratio be-
tween an eigenvalue and the next adjacent eigenvalue (Jackson, 1993) (i.e., �k/�k+1;
acronym:Rnd-Ratio); and (4) the difference between an eigenvalue and the next adja-
cent eigenvalue (i.e.,�k − �k+1; acronym:Rnd-Delta). The P-value for each axis and
each test statistic is then estimated as: (number of random values equal to or larger than
the observed +1)/1000. Note that the observed value is included as one possible value
of the randomized distribution; hence the addition of 1 in the numerator and
denominator.

2.1.3. Randomization methods based on eigenvectors
An implicit assumption in PCA is that non-trivial axes have at least two variables associ-

ated with them (Zwick and Velicer, 1986). Therefore, estimating the number of significant
eigenvector loadings in each axis can provide a rule for component retention (acronym:
Rnd-EigV). Here eigenvectors were scaled to produce loadings whose values are equiva-
lent to the Pearson product-moment correlation between the PC scores and the individual
variables. Eigenvectors scaled in this fashion are known as V-vectors (Jackson, 1991: p. 16;
Peres-Neto et al., 2003). The randomization protocol was conducted as follows: (1) ran-
domize the values within variables in the data matrix; (2) conduct a PCA on the randomized
data matrix; and (3) repeat steps 1 and 2 a total of 999 times. Each absolute loading for the
original data matrix is compared with the corresponding absolute loading from the random-
ized PCAs (i.e., the same variable from the same axis) to generate a probability associated
with the null hypothesis. TheP-value is then estimated as for the previous randomization
method.A particular axis was retained if at least two eigenvector loadings were significantly
correlated to it.

2.1.4. Bootstrap methods based on eigenvalues
Bootstrap confidence intervals for eigenvalues (Jackson, 1993) were based on resampling

the original data with replacement so that the bootstrapped sample is consistent with the
original dimensions of the data matrix. 1000 bootstrapped samples were drawn and a PCA
was conducted on each of them. There are a number of methods for estimating confidence
intervals (Manly, 1997) and we applied the percentile method (Efron, 1979; Manly, 1997,
p. 39). TheP-value for each axis was estimated as the number of bootstrapped samples equal
to or smaller than a particular value representing the expectation under the null hypothesis,
divided by the number of bootstrap samples. Given that the average values of all eigenvalues
from a spherical population are different than the expected value of unity, we considered
four different values under the null hypothesis: (1) eigenvalues> 1.0 ( Lambert et al., 1990;
acronym:Bt-KG ), (2) Broken-stick values (acronym:Bt-BS; see stopping rules based
on average test statistic values for a complete explanation on the Broken-stick model), (3)
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average eigenvalue from the ParallelAnalysis (acronym:Bt-PA), and (4) average eigenvalue
from the randomization procedure (acronym:Bt-RndAvg).

2.1.5. Bootstrap methods based on eigenvectors
Here bootstrap confidence intervals for loadings (Jackson, 1993; Peres-Neto et al., 2003)

instead of eigenvalues were estimated using the same method described above.P-values
were estimated as the number of bootstrapped samples equal to or smaller than zero for
loadings which in the original matrix were positive, or alternatively equal to or larger than
zero for loadings which originally were negative, divided by the number of bootstrap sam-
ples (acronym:Bt-Eig). The same scaling process for the eigenvectors forRnd-EigV was
used. Any axis with at least two significant eigenvector loadings was retained. Two major
drawbacks when estimating bootstrap confidence intervals for loadings are: (1) axis reflec-
tion, which is the arbitrary change in the sign of the eigenvectors of any particular axis
(Mehlman et al., 1995; Jackson, 1995); and (2) axis reordering (Knox and Peet, 1989; Jack-
son, 1995) where two or more axes have very similar eigenvalues. Under either condition,
inappropriate values in relation to the observed coefficients are used for estimating confi-
dence intervals. To overcome this problem, we applied a procedure described inPeres-Neto
et al. (2003)to each bootstrap sample as follows: (1) calculate correlations between the
PCA scores for the original data matrix and the PCA scores for the bootstrap sample; and
(2) examine whether the highest absolute correlation is between the corresponding axis for
the original and bootstrapped samples. Whenever that was not the case, the eigenvectors
were reordered. For example, in the case where the correlation between the first original
axis and the second bootstrapped axis was the largest correlation, then the loadings from the
second bootstrapped axis are used to estimate the confidence interval for the original first
PC axis. This procedure is equivalent to performing orthogonal rotations and correcting for
reversals in the axis ordering (Milan and Whittaker, 1995). To avoid axis reflections, once
reversals were resolved, the signs of the correlations were inspected. A negative correlation
between an original axis and a bootstrapped axis indicates a reflection and the coefficients
were converted by multiplying them by−1.

2.1.6. Correlation critical values for eigenvectors
This method simply tests loadings against the critical values for parametric correlation

from standard statistical tables (acronym:r-EigV ). Any particular axis with at least two
“significant” eigenvector loadings was retained. The same scaling process for the eigenvec-
tors forRnd-EigV was used (i.e., V-vectors).

2.1.7. Test of sphericity
Once all meaningful variation in the data has been summarized, the remaining variation

can be described as a multidimensional sphere where axis orientation is positioned arbi-
trarily. This point is reached when there is no common correlation among variables. The
sphericity test (acronym:Sphere) assesses when this arbitrary positioning is reached by
finding the axis where all remaining components have similar eigenvalues. The original
test was developed byBartlett (1950)and received several modifications (Jackson, 1991).
Here we applied the form presented byPimentel (1979), which is relevant to correlation
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matrices:

�2
k=

n − k − 2(p − k) + 7 + 2/(p − k)

6
+

k∑
j=1

(
�

�j − �

)2



×

− ln

p∏
j=k+1

�j + (p − k) ln �


 ,

wherep denotes the number of components or variables,�k represents the eigenvalue for
the kth component,� = ∑p

j=k+1�j / (p − k) andn is the number of observations in the

sample.�2
k is approximately�2 distributed with 0.5(p-k-1)(p-k+2) degrees of freedom. For

each axis calculate its correspondent�2 value.

2.1.8. Bartlett’s test for the first principal component
Bartlett (1954)extended his original test of sphericity to evaluate whether the eigenvalue

for the first principal component is significantly different from the remaining eigenvalues
(acronym:Bartlett ). The test also received some modifications, and the following version
applied byJackson (1993)was used:

�2 = −
[
n − 1

6
(2p + 11)

]
ln |R|,

where|R| is the determinant of the correlation matrix,n is the sample size andp the number
of variables.�2 is approximately�2 distributed withp(p-1)/2 degrees of freedom. The null
hypothesis here is all variables are uncorrelated. If the test is non-significant, one should
not look for additional structure in the data.

2.1.9. Lawley’s test for the second principal component
Lawley (1956)developed a test that evaluates whether the eigenvalue for the second prin-

cipal component is significantly different from the remaining set of eigenvalues (acronym:
Lawley). Thus, the null hypothesis here is that at least two variables are correlated (i.e., first
axis significant) and the second eigenvalue is not significantly different from the remaining
ones. The test statistic is as follows:

�2 = n − 1

1 − r

p∑
i=1
i �=j

p∑
j=1
i �=j

(rij − r)2 − �
p∑

k=1

(rk − r)2,

whererij is the correlation between variablei andj and

r = 2

p(p − 1)

p∑
i=k+1

p∑
j=1

rij , � = (p − 1)2(1 − (1 − r)2)

p − (p − 2)(1 − r)2 ,

rk = 1

(p − 1)

p∑
i=1
i �=k

rik.
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�2 is approximately�2 distributed with(p + 1)(p − 2)/2 degrees of freedom. Although
this test only provides an assessment of the first two components, the criterion can be
valuable in cases where they summarize a large proportion of the variation in the data.

2.2. Stopping rules based on average test statistic values

Rules based on average values are assessing whether an observed test statistic based
on eigenvalues or eigenvectors is larger than the average value expected under the null
hypothesis of no association between variables. One may also see some of these rules as
based on 50% confidence intervals; however given that there are a number of rules based
on this criteria we have decided to make a distinction between the two types of rules.

2.2.1. Kaiser-Guttman
When using correlation matrices, population components having eigenvalues larger than

1.0 summarize shared variation and should be retained (Guttman, 1954; acronym:KG ).
However, due to sampling variation, approximately one-half of sample eigenvalues from
random data will exceed 1.0. Despite being severely criticized for this reason (e.g.,Karr
and Martin, 1981; Jackson, 1993), this method is still very popular among data analysts.

2.2.2. Broken-stick
If one assumes that the total variance in a multivariate data set is divided at random

amongst all components, the expected distribution of the eigenvalues can be assumed to
follow a broken-stick distribution (Frontier, 1976; Legendre and Legendre, 1998). The idea
underlying the model is that if a stick is randomly broken intop pieces,b1 would be the
average size of the largest piece in each set of broken sticks,b2 would be the average size
of the second largest piece, and so on. In the case of correlation matrices (i.e., standardized
variables),p equals the number of components and the total amount of variation across
all components. The proportion of total variance associated with the eigenvalue for thekth
component under the broken-stick model is obtained by:

bk = 1

p

p∑
i=k

1

i
,

wherep is the number of variables. If thekth component has an eigenvalue larger thanbk,
then the component should be retained (acronym:BS). Jackson (1993)showed that this
method performs well, at least when variables are highly correlated.

2.2.3. Random average under permutation
This rule is based on the average eigenvalue obtained under a randomization of the

data matrix, acquired from step (3) of the randomization test based on eigenvalues. If the
observed exceeds the average random value, that particular axis is considered to be non-
trivial (acronym:Avg-Rnd).
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2.2.4. Random average under parallel analysis
The rule is based on the average eigenvalue acquired from step (3) of the parallel analysis

rule. If the observed eigenvalue values exceed the average value, that particular axis is
considered as non-trivial (acronym:Avg-PA).

2.2.5. Random average under randomization versus average under bootstrap
Given that the average eigenvalue under a bootstrap protocol may represent a better

estimate of the population eigenvalue, we developed this rule such that if the average boot-
strapped eigenvalue is larger than the average from the randomization procedure, then
the null hypothesis should be rejected (acronym:BtAvg-RndAvg). Average bootstrapped
eigenvalues are calculated from the 1000 bootstrap samples generated in bootstrap methods
based on eigenvalues, and random average eigenvalues are calculated as in the rule “random
average under permutation” above.

2.2.6. Minimum average partial correlation
Velicer (1976)suggested a criterion based on the average partial correlation between

variables after removing the effect of the firstk principal components, which is:

fk =
p∑

i=1
i �=j

p∑
j=1
i �=j

(rij .k)
2/p(p − 1),

wherep is the number of variables or components,rij .k is the partial correlation between
variablesi and j when the variation related to the firstk components have been removed.
The numerical value offk will initially decrease ask increases, and then increase. Velicer’s
stopping rule is based on the number of componentsk that provides the smallestf . Velicer
(1976)also proposed a measure based on the average values for the original correlations to
determine whether any component should be retained at all

f0 =
p∑

i=1
i �=j

p∑
j=1
i �=j

r2
ij /p(p − 1).

If f1 > f0, then no components should be retained (acronym:Part(f0)). In initial simula-
tion trials, we noted that thePart(f0) can be conservative (i.e., extracting a smaller number of
non-trivial components than it should) and therefore, we also applied Velicer’s method (i.e.,
Part(f0)) without using thef0 criterion (acronym:Part). Zwick and Velicer (1986)found
that the original method (i.e., Part(f0)) is quite accurate in identifying components where
many variables load in a particular component, but relatively small non-trivial components
are usually not detected.

3. Assessing rule performance

We followed a Monte Carlo protocol equivalent to the one used by Zwick and Velicer
(1986) andJackson (1993)for assessing the robustness of stopping rules in estimating
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the number of non-trivial components using PCA. The first step was to design correlation
matrices (Fig. 1). All matrices were produced with 9 or 18 variables and divided into
groups having different numbers of variables to generate non-trivial components (e.g.,
matrix 1 has three non-trivial principal components where the first one summarizes the
covariation of 4 out of 9 variables or 8 out of 18 variables,Fig. 1).As common to many other
studies (Reddon, 1985; Zwick andVellicer, 1986;Buja and Eyuboglu, 1992; Jackson, 1993),
trivial components are degenerate and therefore carry only noise. Conversely, non-trivial
components are considered as non-degenerate (i.e., present eigenvalues differing among
components). Here we apply the notion that in PCA based on correlation matrices, only
population axes having eigenvalues larger than unit are worth interpreting. PCA solutions
for axes having population eigenvalues smaller or equal than unity are extremely unstable
under sampling variation due to their proximity, presenting themselves nearly degenerate.
Therefore, robust stopping rules should be able to the detect at which point eigenvalues
become nearly degenerate, hence hindering interpretation.Fava and Velicer (1992)and
Lawrence and Hancock (1999)showed that when axes considered as trivial (under the same
definition applied here) are included in the analysis, the results appear distorted. These
studies conclude that, when comparing sample multivariate solutions for the non-trivial
axes with the non-trivial axes for the population solutions, the results are equivalent. Once,
trivial axes are compared under the same criterion (i.e., sample versus population solutions),
the results are quite different, i.e., distorted. In addition, in a simulation study (unpublished
results) we compareJackson’s (1993)eigenvalue bootstrap method and a form of Parallel
Analysis for eigenvalues for comparing adjacent eigenvalues. We have found that for axes
equal or smaller than one, both tests presented extremely low power (< 5% in most cases)
thus becoming impossible to discern between degenerate and non-degenerate solutions for
axes having eigenvalues equal or smaller than unit.

Between-group (either 0.5, 0.3, 0.2, 0.1 or 0.0) and within-group (either 0.8, 0.5 or 0.3)
correlations of variables were fixed to a particular uniform value. Four additional matrices
containing uniform cross-correlations were also considered. Matrix 15 contained either 9
or 18 variables where all cross-correlation values were 0.8. Matrix 16 contained all cross-
correlations at 0.5 and matrix 17 all values at 0.3. Matrix 18 was designed to represent pure
uncorrelated data (i.e., a spherical population). These matrices were designed to incorporate
various combinations of the following factors: number of non-trivial components; eigen-
value distributions along axes; loading magnitude; number of variables per component;
unique variables which load with only one principal component (e.g.,Fig. 1, matrices 1 and
4) or complex variables which load with more than one component (e.g.,Fig. 1, matrices 2
and 3); and the influence of uncorrelated variation (i.e.,Fig. 1matrices 10–14). The second
step was to associate the correlation structures with a particular marginal distribution for
their variables. FollowingAnderson and Legendre (1999), we considered the normal, expo-
nential and exponential3 distributions. Exponential deviates were generated as the negative
logarithm of a uniformly distributed deviate. Those deviates were then cubed to generate
exponential3 deviates. We fixed sample sizes as 30 and 50 observations for populations
containing 9 variables and 60 and 100 observations for populations with 18 variables for all
simulations performed throughout this study. To draw samples from a population following
any particular correlation matrix we have used the following steps (Barr and Slezak, 1972;
see alsoPeres-Neto and Jackson, 2001): (1) generate a matrix composed by the appropriate
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Fig. 1. Correlation matrices considered in this study. The values presented are the off-diagonal intervariable
correlations. For example in matrix 1, variables 1–4 were correlated with one another atr = 0.8. However,
correlations between these and all other variables were equal to 0.



984 P.R. Peres-Neto et al. / Computational Statistics & Data Analysis 49 (2005) 974–997

number of observations (30 or 60) and number of variables (9 or 18) containing random de-
viates with mean= 0 and variance= 1 following one of the three distributions considered
(i.e., normal, exponential and exponential3); given that the variance of deviates from an
exponential3 distribution is rather different than unity, it was necessary to standardize the
columns of the generated matrix afterward (Legendre, 2000), (2) decompose the correlation
matrix by some method of matrix triangular factorization (in this case we used Cholesky
decomposition), and (3) post-multiply the upper triangular matrix resulting from the matrix
factorization of step 2 by the matrix of step 1. Note that the resultant sample data matrix
(30 observations by 9 variables, or 60 observations by 18 variables) in step 3 follows a
multivariate distribution according to the marginal distribution and particular correlation
matrix chosen (Fig. 1).

The last step was to estimate empirically the accuracy of each method in assessing the
number of non-trivial components of the simulated populations. For each population con-
taining 9 variables (i.e., a total of 54 populations as a result of combinations of each correla-
tion matrix and each associated marginal distribution), 1000 random samples were drawn.
Due to smaller sampling variation, populations containing 18 variables were evaluated on
the basis of 500 random samples. Based on initial simulation trials, we determined that most
rules tended to underestimate the number of non-trivial components; therefore we did not
attempt to provide any correction for test probabilities for preventing inflated type I errors
(Peres-Neto, 1999). We adopted a paired-test protocol where all rules were applied to the
same samples for all populations, thus minimizing differences related to sampling variation
in Monte Carlo simulations. A significance level of� = 0.05 was used for evaluating the
significance of procedures based on statistical tests, though equivalent results were found
for � = 0.01.

4. Analyzing simulation results

For each population (i.e., correlation structure associated with a distributional type),
sample size and rule, we calculated the average of the absolute difference between the
estimated and expected values across all estimates available. These averages estimated by
how many components the rules for each population tended to be in error, and served as
a measure of the overall quality of the estimation for each rule. For instance, a value of
0.0 would indicate perfect assessment; a value of 1.0 would indicate that the particular
combination tended to over or underestimate the actual value by one axis. Note, however,
that this average value does not assess the relative merits of over or underestimating the
number of non-trivial components. To reduce the vast amount of results, this assessment was
done subsequent to identifying the more accurate methods. For each combination of sample
size and distributional type, a table containing the average of the absolute differences for each
method (rows) and for each correlation matrix (columns) across all sample tests was built.An
additional row containing zeros (i.e., after removing the number of non-trivial components
by calculating absolute differences) was included so that methods could be contrasted to the
correct number of non-trivial components. In order to assess the similarities among methods
and their relative proximity to the correct number of non-trivial components, for each of
these tables a matrix of Euclidean distances between all possible pairs of methods and the
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correct number of non-trivial components (i.e., between rows of the tables described above)
was calculated and a Principal Coordinate Analysis (PcoA;Legendre and Legendre, 1998)
was conducted. Two of the stopping rules were analyzed separately from the PCoA (i.e.,
Bartlett’s and Lawley’s tests) as they only assessed the significance of the first and second
eigenvalues, respectively.

5. Examining real data sets

The use of simulated data is preferable because the number of non-trivial components is
known and conditions of interest can be manipulated. However, there is always the question
of whether simulated data represent plausible biological scenarios and how many of the
conclusions are directly applicable in real situations. We selected four data sets represent-
ing a gradient from weak to strong correlation structures as in our simulated scenarios (Fig.
1). Data setMORPH1 represents 7 morphological variables for 38 bird species from Bur-
gundy (France) and California (USA) studied byBlondel et al. (1984). Data setMORPH2
comprises 6 morphological variables for 13 species of West IndianAnolis lizards (Losos,
1990). Data setBEHAVIOR represents 6 behavioral variables for the same 13 lizard species
in MORPH2. Raw data forMORPH2 andBEHAVIOR were both log10 transformed. Fi-
nally, data setENVIRON represents 8 environmental variables for 42 lakes sampled by
Robinson and Tonn (1989)in the Athabasca River basin. Lakes having missing data were
deleted from the analysis. All variables, with the exception of pH, were log10 transformed.

6. Results

Summaries of the average absolute difference between each rule and the correct number of
non-trivial components across all correlation matrices for each sample size and distributional
type are presented inTable 1. Irrespective of matrix size and type of distribution,Rnd-
Lambda, Rnd-F, Avg-Rnd, PA, Avg-PA andPart were the most accurate rules overall.
As expected, accuracy is better for populations with larger number of variables and sample
sizes. We removedKG , Sphere, Bt-BS, andr-EigV from further inspection due to their
poor performance (Table 1).

The first two PCoA provided a good summary of differences in performance between
rules (Fig. 2) given that they summarized larger amounts of variation. Only results for
the normal distribution are presented as the other distributional types led to equivalent
interpretations. For correlation matrices containing the same number of variables, PCoAs
were extremely concordant (Fig. 2), suggesting that the relative performance of these rules is
highly consistent irrespective of sample size and type of distribution. However, the results
were not consistent across matrices having different number of variables. Because the
amount of variation of equivalent axes was similar among scenarios, Euclidian distances
among loadings representing a particular method are comparable between PCoAs. Overall
tests based on 50 observations were more accurate than samples based on 30 observations
for matrices with 9 variables. Similar findings resulted when comparing samples sizes of
100 and 60 observations for matrices with 18 variables.
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Table 1
Values of the average absolute difference between sample test estimates and the known dimensionality across correlation matrices for each rule according to number of
variables, sample size and distributional type

Rules 9 variables 18 variables

Normal E ponential E ponential3 Normal Exponential Exponential3

(n = 30) (n = 50) (n = 30) (n = 50) (n = 30) (n = 50) (n = 60) (n = 100) (n = 60) (n = 100) (n = 60) (n = 100)

KG 1.13 1.07 1.14 1.07 1.1 1.05 2.46 2.21 2.47 2.22 3.74 3.68
BS 1.03 1.11 1.02 1.09 1.06 1.15 0.47 0.51 0.45 0.49 1.42 1.47
Rnd-Lambda 0.77 0.54 0.77 0.54 0.86 0.64 0.19 0.09 0.19 0.08 1.15 1.32
Rnd-F 0.77 0.54 0.77 0.54 1.88 5.6 0.19 0.09 0.19 0.08 4.51 5.05
Rnd-Ratio 0.91 0.73 0.91 0.73 1.02 0.82 0.43 0.32 0.43 0.31 0.97 1.09
Rnd-Delta 0.91 0.61 0.95 0.65 1.04 0.78 0.25 0.14 0.22 0.16 1.4 1.43
Avg-Rnd 0.66 0.54 0.65 0.53 0.63 0.51 0.29 0.20 0.29 0.23 1.61 1.83
Rnd-EigV 1.14 0.92 1.15 0.94 1.33 1.17 0.58 0.49 0.52 0.49 1.46 1.61
r-EigV 2.30 4.10 2.33 4.12 2.44 4.16 9.41 11.17 9.29 11.65 11.02 12.62
PA 0.75 0.54 0.75 0.54 0.81 0.62 0.25 0.14 0.23 0.14 1.31 1.55
Avg-PA 0.65 0.55 0.65 0.53 0.62 0.49 0.29 0.20 0.29 0.24 1.46 1.67
Bt-KG 1.00 0.91 0.99 0.92 1.03 1.00 1.90 1.87 2.01 1.88 2.88 2.98
Bt-BS 1.48 1.51 1.49 1.51 1.62 1.65 0.80 0.76 0.79 0.76 1.4 1.51
Bt-PA 0.86 0.72 0.86 0.71 0.93 0.78 0.71 0.61 0.68 0.59 0.92 1.09
Bt-RndAvg 0.86 0.72 0.86 0.71 0.91 0.75 0.71 0.61 0.69 0.60 1.06 1.24
BtAvg-RndAvg 0.93 0.88 0.93 0.88 0.92 0.83 1.18 1.15 1.17 1.13 2.32 2.55
Bt-Eigv 0.88 0.64 0.96 0.71 1.27 1.12 0.34 0.21 0.31 0.24 1.35 1.32
Sphere 1.45 1.46 1.80 1.78 2.43 2.41 4.81 3.76 3.29 4.04 6.78 6.72
Part(fo) 1.02 0.93 1.09 0.98 1.08 0.95 0.22 0.12 0.21 0.14 1.43 1.47
Part 0.68 0.63 0.70 0.64 0.73 0.66 0.26 0.17 0.20 0.17 0.92 0.9

The results represent averaged values from all simulated matrices. Methods in bold represent the smaller means across all scenarios. Acronyms are defined in the te t.
Methods are in order of appearance in the methods section.
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Fig. 2. First two axes from a principal coordinates analysis of the known dimensionality and that obtained from
each stopping rule and the known dimensionality for normally distributed samples from matrices containing 9
variables based on (a) 30 observations, (b) 50 observations, and from matrix containing 18 variables based on (c)
60 observations and (d) 100 observations. Acronyms are defined in the text.

In order to acquire more specific details on the performance of the most reliable rules
(i.e.,Rnd-Lambda, Rnd-F, Avg-Rnd, PA, Avg-PA andPart; Table 1), for each rule we
calculated the percentage of sample estimates that deviated a set amount from the correct
number of non-trivial components for each correlation matrix. For simplicity of results,
we only consider samples with 50 (Table 2) and 100 (Table 3) observations from the
normal distribution. Although numerical performance differs when considering the other
scenarios, the relative performance among rules did not (Fig. 2). All methods tended to
underestimate the correct number of non-trivial axes for populations in which all variables
were correlated at some level (i.e., matrices 1–9), whereas for matrices with uncorrelated
variables, the rules tended to overestimate the number of non-trivial components (Tables
3 and4). All methods were very precise in extracting the number of correct components
from uniform matrices (matrices 15–18). Overall,PA, Rnd-Lambda, Rnd-F andPart
were more precise in the presence of uncorrelated variance (i.e., matrices 10–14), whereas
Avg-PA andAvg-Rnd performed better against data without uncorrelated variance (i.e.,
matrices 1–9). Rules based on confidence interval (Rnd-Lambda, Rnd-F andPA) were
less sensitive to the amount of uncorrelated variance in the data, but did not perform as
well for highly correlated data as was the case forAvg-PA andAvg-Rnd that are based
on average values.Part underestimated the number of non-trivial components more than
any other rule. Tests based on samples from the largest matrix with 18 variables (Table 3)
provided greater accuracy.
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Table 2
Percentage of number of non-trivial components estimated byRnd-Lambda,Avg-PA, PA andBt-EiV deviating from a set amount from the known dimensionality for
each correlation matrix based on normally distributed samples for 9 variables and 50 observations

Matri Avg-PA (and Avg-Rnd) PA

< = −3 −2 −1 0 1 2 > = 3 < = −3 −2 −1 0 1 2 > = 3

1 0.9 99.1 3.8 96.2
2 3.6 50.6 45.8 9.6 64.8 25.6
3 70.6 28.2 1.2 84.8 15.0 0.2
4 0.2 13.8 86.0 1.0 36.7 62.3
5 18.2 56.0 25.8 41.0 52.3 6.7
6 0.4 7.6 36.1 49.8 5.3 0.7 0.1 3.6 32.0 52.8 11.5 0.1
7 12.3 87.6 0.1 0.5 31.6 67.9
8 0.6 66.9 32.5 4.2 85.2 10.6
9 0.1 55.2 44.7 1.4 82.7 15.9

10 0.5 72.8 24.7 2.0 2.5 92.6 4.9
11 8.8 51.6 31.2 8.0 0.4 0.9 33.7 59.1 6.2 0.1
12 50.6 30.9 15.9 2.6 86.4 12.8 0.8
13 0.2 42.8 33.5 16.7 6.8 4.6 76.5 17.5 1.3 0.1
14 12.9 35.7 25.5 17.2 8.7 42.9 47.0 9.5 0.6
15 100.0 100.0
16 100.0 100.0
17 98.1 1.7 0.2 99.8 0.2
18 50.7 20.5 13.8 15.0 69.0 25.4 5.1 0.5
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Table 2. (Continued)

Matrix Rnd-Lambda (and Rnd-F) Part

< = −3 −2 −1 0 1 2 > = 3 < = −3 −2 −1 0 1 2 > = 3

1 3.8 96.2 3.4 24.7 71.9
2 10.1 64.8 25.1 6.6 5.3 88.1
3 85.4 14.4 0.2 10.6 28.8 60.6
4 2.2 37.8 60.0 39.6 58.6 1.8
5 43.4 49.9 6.7 45.9 53.0 1.1
6 11.0 32.8 44.1 12.0 0.1 93.3 6.7
7 1.4 31.1 67.5 28.0 53.3 18.7
8 4.7 85.1 10.2 18.4 81.3 0.3
9 1.4 82.7 15.9 27.5 72.3 0.2

10 2.6 92.2 5.2 15.6 83.8 0.6
11 3.5 35.4 55.8 5.3 82.1 17.9
12 0.0 88.0 11.1 0.9 0.0 97.7 2.3
13 6.8 80.0 11.8 1.3 0.1 99.6 0.4
14 59.3 35.1 5.3 0.3 0.0 100.0
15 100.0 100.0
16 100.0 100.0
17 99.8 0.2 99.9 0.1
18 95.6 3.5 0.8 0.1 100.0

Avg-Rnd provided extremely similar results toAvg-PA, and the same withRnd-Lambda andRnd-F and thus their results were not tabulated, but for convenience
they are indicated in the table with the rule that provided similar outcome. Differences of zero indicate perfect assessment. Deviations of more than3 components were
combined and those less than 3 components were treated similarly. Acronyms are defined in the text.
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Table 3
Percentage of number of non-trivial components estimated byRnd-Lambda,Avg-PA, PA andBt-EiV deviating from a set amount from the known dimensionality for
each correlation matrix based on normally distributed samples for 18 variables and 100 observations

Matrix Avg-PA (and Avg-Rnd) PA

< = −3 −2 −1 0 1 2 > = 3 < = −3 −2 −1 0 1 2 > = 3

1 100.0 100.0
2 100.0 100.0
3 49.0 51.0 2.0 64.0 34.0
4 100.0 0.0 100.0
5 3.0 97.0 11.0 89.0
6 1.0 98.0 1.0 4.0 96.0
7 0 100.0 100.0
8 12.0 88.0 26.0 74.0
9 2.0 98.0 5.0 95.0

10 94.0 6.0 100.0
11 77.0 22.0 1.0 94.0 6.0
12 68.0 26.0 6.0 89.0 11.0
13 60.0 30.0 7.0 3.0 88.0 12.0
14 46.0 37.0 12.0 5.0 88.0 9.0 3.0
15 100.0 100.0
16 100.0 100.0
17 100.0 100.0
18 53.0 25.0 7.0 15.0 34.0 46.0 16.0 4.0
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Table 3. (Continued)

Matrix Rnd-Lambda (and Rnd-F) Part

< = −3 −2 −1 0 1 2 > = 3 < = −3 −2 −1 0 1 2 > = 3

1 100.0 100.0
2 100.0 1.0 99.0
3 2.0 64.0 34.0 2.0 98.0
4 100.0 100.0
5 88.0 1.0 99.0
6 7.0 93.0 5.0 59.0 36.0
7 0.0 100.0 100.0
8 26.0 74.0 70.0 30.0
9 5.0 95.0 58.0 42.0

10 99.0 1.0 100.0
11 96.0 4.0 3.0 97.0
12 91.0 9.0 100.0
13 90.0 10.0 100.0
14 90.0 7.0 3.0 100.0
15 100.0 100.0
16 100.0 100.0
17 100.0 100.0
18 94.0 4.0 2.0 0.0 100.0

Avg-Rnd provided extremely similar results toAvg-PA, and the same withRnd-Lambda andRnd-F and thus their results were not tabulated, but for convenience
they are indicated in the table with the rule that provided similar outcome. Differences of zero indicate perfect assessment. Deviations of more than3 components were
combined and similarly those less than 3 were combined. Acronyms are defined in the text.
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Table 4
Percentage of significant results for the Bartlett and Lawley tests according to sample size and distributional type

Matri Bartlett Lawley

9 variables 18 variable 9 variables 18 variable

Normal E ponential3 Normal Exponential3 Normal Exponential3 Normal Exponential3

(n = 30) (n = 50) (n = 30) (n = 50) (n = 60) (n = 100) (n = 60) (n = 100) (n = 30) (n = 50) (n = 30) (n = 50) (n = 60) (n = 100) (n = 60) (n = 100)

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 0.61 0.91 0.60 0.75 1.00 1.00 0.91 0.99 0.97 0.99 0.99 1.00 1.00 1.00 0.99 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 0.72 0.97 0.68 0.89 0.98 1.00 0.96 1.00 0.95 0.98 0.96 1.00 0.98 1.00 0.99 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.98 1.00 1.00 1.00 1.00 1.00
13 0.57 0.88 0.54 0.72 1.00 1.00 0.88 0.99 0.85 0.92 0.89 0.95 1.00 1.00 0.95 0.99
14 0.18 0.34 0.16 0.29 0.72 0.99 0.53 0.64 0.76 0.81 0.75 0.82 1.00 1.00 0.82 0.90
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
17 0.98 1.00 0.80 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18 0.06 0.05 0.31 0.30 0.07 0.05 0.39 0.35 0.46 0.47 0.44 0.45 0.37 0.50 0.44 0.44

The e ponential distribution is not shown as it presents results similar to the normal distribution.
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Table 5
Eigenvalues and relative proportion of variation explained (in brackets) for the first 4 principal components based
on the ecological data sets and the number of components retained for each rule

Component MORPH1 MORPH2 PERFORM ENVIRON

Eigenvalues

1 4.90 (70.0) 4.60 (76.7) 2.55 (42.5) 1.94 (24.2)
2 0.83 (11.9) 0.71 (11.9) 1.69 (28.1) 1.64 (20.5)
3 0.55 (7.9) 0.48 (8.1) 1.03 (17.2) 1.31 (16.3)
4 0.36 (5.1) 0.14 (2.3) 0.45 (7.5) 0.98 (12.3)

Rule Number of components retained

BS 1 1 3 0
Rnd-lambda 1 1 1 0
Rnd-F 1 1 1 0
Rnd-Ratio 1 1 1 2
Rnd-Delta 1 1 0 0
Avg-Rnd 1 1 2 3
Rnd-EigV 1 1 0 1
PA 1 1 1 1
Avg-PA 1 1 2 3
Bt-KG 1 1 2 3
Bt-PA 1 1 1 2
Bt-Rnd Avg 1 1 1 2
BtAv-RndAvg 1 1 2 3
Bt-Eigv 4 1 1 1
Part(fo) 1 1 0 0
Part 1 1 1 1
Bartlett 1 1 1 1
Lawley 2 2 0 2

Acronyms are defined in the text.

Performance of the Bartlett’s test for the first principal component and Lawley’s test for
the second principal component were evaluated on the basis of number of significant tests
out of the total number of sample tests for each population (Table 4). Bartlett’s test was very
efficient in detecting the presence of at least one component in most cases, being affected
slightly by sample size and by samples from the exponential3 distribution. Lawley’s test
did not discriminate between matrices with greater or fewer than two components (e.g.,
contrast results for matrices 11 and 12) and also provided poor assessment when evaluating
the spherical population indicating in some cases that 50% of the samples contained two
non-trivial components. The distributional type was influential in both tests.

The results for the real data sets are presented inTable 5. Note thatMORPH1 and
MORPH2 comprise highly correlated variables, such that the first principal component
explains 70.0% and 76.7% of the total variation, respectively. For these two data sets, the
majority of rules retained only the first component. The data setBEHAVIOR represents a
situation where the total variation is partitioned more evenly among more components, so
that the first one represents only 42.5% of the total variation (Table 5). Most rules tended
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to consider between 1 or 2 non-trivial components. Finally,ENVIRON is a case where
variables are weakly correlated, and thus the first component only represents 24.2% of the
total variation. In this last case, the rules showed little agreement, extracting between 0 and
3 components as being interpretable (Table 5). Thus, as indicated by the simulation results,
matrices where correlations were larger provided greater agreement between rules.

7. Discussion and concluding remarks

Our intent in using a large number of scenarios was twofold: (1) establish overall rule per-
formance; and (2) capitalize on the chances of establishing general trends in their statistical
behavior. Given that rule performance is also dependent on correlation structure (Tables 3
and4), it seems inappropriate to establish quality of estimation based only on overall perfor-
mance because conclusions depend on how many of each particular correlation structures
were used. For instance, we found that some rules outperform others in the presence of
uncorrelated variables or where matrices contain larger number of variables. Moreover, if
only highly correlated variables are used, one can have a better chance of finding that some
methods perform better or perhaps more similarly. For instance, Zwick and Velicer (1986)
found thatPart(fo) was very accurate for components with large eigenvalues, or where there
was an average of eight or more variables per component. Because these features were not
in our matrices, this may account for whyPart(fo) did not perform well.

We attempted to establish matrices that approximate the typical size of ecological and
evolutionary data sets (between 9 and 18 variables) and that provided a wide range of
eigenvalue distributions along trivial and non-trivial components (Fig. 1). We found that
Avg-PA, Avg-Rnd, PA, Rnd-Lambda, Rnd-F andPart are the most promising rules for
component evaluation. They were quite accurate, especially considering some of the weakly
correlated structures we have employed, and in general, at least 80% of the samples under or
overestimated the correct number of non-trivial components by only one component (Tables
2 and3). However their performance varied across different correlation scenarios.Avg-PA
andAvg-Rnd outperformed the other ones when data did not contain uncorrelated variables.
Rnd-Lambda andRnd-F were more effective against uncorrelated variance (Tables 2and
3). It seems that becauseAvg-PA andAvg-Rnd are based on less stringent criteria (i.e.,
average rules) than confidence interval rules, they were too liberal, thus providing good
performance for highly correlated data, but not for data containing uncorrelated variables.
Perhaps a less conservative interval (e.g., 80%) would be more appropriate, maximizing
the chances of correctly estimating the correct number of non-trivial components of highly
correlated data, while still minimizing excessive trivial components when data contain
uncorrelated variance.

Given the difference in rule performance, it is interesting to evaluate the relative disad-
vantages of over or underextraction of number of principal components.Fava and Velicer
(1992)anticipated that overextraction might not be as serious a problem as underextraction
because the amount of variation for each component decreases successively. In fact, their
simulation results indicated that, at least for strong correlation structures, overextraction did
not degrade the patterns related to multivariate scores, whereas in weakly correlated data
structures produced very negative effects.Lawrence and Hancock (1999)were concerned
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about the integrity of eigenvector loadings under overextraction and found similar results
compared toFava and Velicer (1992). Under these considerations, if one wants to be con-
servative and is willing to lose information rather than incorporate noise into the model, the
use ofRnd-Lambda or Rnd-F seems to be more appropriate thanAvg-PA andAvg-Rnd
(Tables 2and3). Another uncertainty related to the issue of overextraction is that sample
axes, especially the later ones, can appear reordered in relation to the PCA solution for the
population. Thus although rules may provide a correct assessment, there is no guarantee that
the correct components are being retained relative to the population PCA, thus potentially
compromising interpretation.

Some methods falsely assigned at least one non-trivial component in spherical popula-
tions (matrix 18,Tables 2and3). To avoid this problem, one could first apply a particularly
efficient method to detect if the matrix contain at least one non-trivial component and
then use another method to estimate the number of principal components. This approach
is handicapped because most rules also failed in assessing correlation matrices with at
least one non-trivial component (Tables 2and3). Overall, the Bartlett’s test seems the best
method for this assessment (Table 4). It maximized the chances of detecting at least one
non-trivial component for matrices 1–14, and identified samples from matrix 18 as coming
from a spherical population. Therefore, we suggest the Bartlett’s test should be applied
first as a means to assess whether data contain at least one principal component. Then,
if the null hypothesis is rejected, use another rule to quantify the number of non-trivial
components.

We have contrasted the different methods using real data so that we could evaluate to
what degree our conclusions based on the simulated scenarios are congruent with real
data sets. Given that we considered an extensive number of scenarios, the real data sets
should resemble some of the populations manipulated. In fact, the differences in estimates
between methods for the real data sets were in agreement with the differences found in the
simulation study. However, one possible avenue to follow could be that the researcher specify
correlation matrices that resemble his or her particular data (e.g., sample size, number of
variables, correlation structure), conduct a customized simulation study, similar to the one
presented here, and select a method that maximizes the chances of correctly retaining
the correct number of non-trivial components. Dimensionality may be then introduced by
transforming small correlation values (say 0.25 and lower) into zero correlations. Note that
attention has to be paid in order to guarantee that the matrix is positive definite. We hope that
this process may bring some general knowledge about the behavior of different methods in
cases of particular correlation structure of interest.

In conclusion, our main goal was to conduct a comparative study so that differences in
performance and behavior of available and new methods could be contrasted and revealed.
Sample size and great departure from normality affected rule performance. However, the
most important finding was that the performance of the methods was largely dependent
on whether data contained uncorrelated variables and on the size of the correlation matrix.
Once at least the first component is detected as significant by the Bartlett’s test, we sug-
gest thatAvg-PA,Avg-Rnd, PA, Rnd-Lambda, Rnd-F or Part can be applied. However,
one should keep in mind the impact of different types of correlation structures and the
relative merits of under and overestimating the number of non-trivial components in the
ordination.
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