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Abstract: Smallmouth bass (Micropterus dolomieu) is a warm-water fish species that is native to central and eastern
North America. Climate change scenarios predict further extension northward of suitable habitat for smallmouth bass,
which may negatively affect native fish species. We developed and compared predictive models of the distribution of
bass in North America using four statistical approaches: logistic regression, classification tree, discriminant analysis,
and artificial neural networks. We collected 4181 geo-referenced records of smallmouth bass occurrence and matched
them with climate data. Artificial neural networks performed the best with the highest sensitivity (correctly predicting
species presence) and specificity (correctly predicting absence), followed by discriminant analysis. Artificial neural net-
works indicated that winter air temperatures were the most important predictors of smallmouth bass occurrence,
whereas the other approaches indicated that summer air temperatures were the best predictors of bass occurrence. Lo-
gistic regression and classification tree exhibited very low sensitivity, but very high specificity as a result of the large
proportion of absences within the data set. Business-as-usual climate change scenarios suggest that smallmouth bass are
expected to have suitable thermal habitat throughout most of Canada and the continental United States by 2100.

Résumé : L’achigan à petite bouche (Micropterus dolomieu) est une espèce de poisson d’eau chaude indigène dans le
centre et l’est de l’Amérique du Nord. Les scénarios de changement climatique prédisent une extension additionnelle
vers le nord de la répartition des habitats adéquats pour l’achigan à petite bouche, ce qui pourrait affecter négativement
les espèces indigènes de poissons. Nous avons mis au point et comparé des modèles prédictifs de la répartition de
l’achigan à petite bouche en Amérique du Nord d’après quatre méthodologies statistiques, soit la régression logistique,
l’arbre de classification, l’analyse discriminante et les réseaux neuronaux artificiels. Nous avons assemblé 4181 points
géoréférencés de la présence d’achigans à petite bouche et les avons associés à des données climatiques. Les réseaux
neuronaux donnent le meilleur résultat avec la sensibilité (prédiction exacte de la présence de l’espèce) et la spécificité
(prédiction exacte de l’absence) les plus grandes; vient ensuite l’analyse discriminante. Les réseaux neuronaux artifi-
ciels indiquent que les températures de l’air en hiver sont les variables explicatives les plus importantes de la présence
des achigans à petite bouche, alors que les autres méthodes désignent les températures de l’air en été comme les meil-
leures variables explicatives de la présence des achigans. La régression logistique et l’arbre de classification possèdent
une sensibilité très basse, mais une spécificité très élevée, le résultat d’un fort pourcentage d’absences dans la banque
de données. Les scénarios de changement climatique de type « laisser-aller » indiquent que, vers l’an 2100, les achi-
gans à petite bouche devraient pouvoir trouver des habitats thermiques adéquats sur presque l’ensemble des territoires
du Canada et des États-Unis continentaux.
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Introduction

Smallmouth bass (Micropterus dolomieu) is a warm-water
fish species native to central and eastern North America
(Scott and Crossman 1973). Since the mid-1800s, the range
of the smallmouth bass has expanded across North America
and throughout Europe, Russia, and Africa as a result of in-
troductions to provide angling opportunities (Scott and

Crossman 1973). Lake stocking, unauthorized introduction
by anglers, and dispersal through drainage networks has fa-
cilitated the range expansion of the smallmouth bass (Jack-
son 2002; Vander Zanden et al. 2004a; Dunlop and Shuter
2006). Although smallmouth bass is a popular angling spe-
cies, the introduction of smallmouth bass has had negative
consequences on native fish communities. For example, the
presence of smallmouth bass has been associated with re-
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duced numbers of cyprinids (MacRae and Jackson 2001;
Jackson 2002). The presence of smallmouth bass has been
shown to cause lake trout (Salvelinus namaycush) to experi-
ence reduced growth, survival, and fecundity because of a
diet shift from cyprinids to energetically inefficient prey
items such as zooplankton in the absence of pelagic forage
fish (Vander Zanden et al. 1999).

Temperature plays a crucial role for different life stages of
smallmouth bass, including likelihood, timing, and success
of spawning (Shuter et al. 1980; Rejwan et al. 1999); activ-
ity levels and growth in young of the year; and over-
wintering survival (Shuter et al. 1980). Year-class strength is
strongly determined by growth and survival rates of small-
mouth bass broods (Rejwan et al. 1997; Shuter and Ridgway
2002), which are strongly correlated to thermal conditions
(Casselman 2002; Casselman et al. 2002; Shuter and
Ridgway 2002). Smallmouth bass growth, particularly for
young individuals, had the strongest relationship with air
temperature from a variety of climatic variables (Dunlop and
Shuter 2006).

Climate change has the potential to greatly influence
smallmouth bass populations. Increases in water tempera-
tures are predicted to have a dramatic impact on water qual-
ity and availability of suitable fish habitat (Magnuson et al.
1990; Magnuson 2002). As temperature increases and the
current thermal regime is shifted northwards, smallmouth
bass populations are also expected to follow the northerly
shift in thermal habitat (Jackson and Mandrak 2002; Shuter
et al. 2002; Sharma et al. 2007). Currently, smallmouth bass
are restricted from these northerly areas because of cool
thermal habitat that prevents successful overwintering of the
young of the year (Shuter et al. 2002).

The objective of our study was to predict smallmouth bass
incidence based on climate data using four statistical ap-
proaches. Statistical approaches that are used with binary
data were compared to evaluate their ability at predicting a
single, binary response variable based on a number of pre-
dictor variables. The four statistical methods compared were

multiple logistic regression, classification tree, linear discri-
minant analysis, and artificial neural networks. Comparison
of predictive statistical approaches is an important consider-
ation because the efficacy of a statistical approach is
dependent upon the characteristics of the data set (e.g.,
model distribution, parametric assumptions, and interactions
between predictor variables). The comparison will determine
which statistical approach is the most appropriate for the
data, and comparisons across methods can provide addi-
tional insight into underlying mechanisms and relationships.
Based on the most appropriate statistical approach and
business-as-usual climate change scenarios, we predicted
smallmouth bass distribution in 2100.

Materials and methods

Data acquisition
We collected 4181 geo-referenced records of smallmouth

bass incidence in North America (Fig. 1a) from a variety of
sources, including FishBase (www.fishbase.org/home.htm),
Fishnet, Florida Natural History Museum, University of
Michigan Museum of Zoology, Illinois Natural History Sur-
vey, Ontario Fish and Habitat Inventory Index, refereed pub-
lications, and dissertations.

We compiled air temperature data for each month cover-
ing Canada and the continental United States. Climate data
were obtained from the Intergovernmental Panel on Climate
Change Data Distribution Centre as 1961–1990 averages.
The data were interpolated from meteorological stations us-
ing thin-plate splines and summarized on a 0.5° latitude by
0.5° longitude grid.

The climate change model that was selected for this study
was the Canadian General Circulation Model Version 2
(CGCM2), a conservative climate change model. We chose
the “business-as-usual scenario” (IS92a) and obtained
monthly air temperature data for the year 2100 from the Ca-
nadian Centre for Modelling and Analysis. Future projec-
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Fig. 1. (a) Locations of smallmouth bass (Micropterus dolomieu) occurrence in Canada and the United States collected for this study.
(b) Training and validation smallmouth bass occurrence data sets used in the statistical analyses. Only smallmouth bass presence is
indicated on the map. Training data and validation data are represented by grey and black circles, respectively.



tions in air temperature were summarized at a 3.75° × 3.75°
grid level.

Using the smallmouth bass and climate data, we summa-
rized the information of smallmouth bass incidence (catego-
rized as either present or absent) on a 0.5° × 0.5° grid for all
regions of Canada and the continental United States. Based
on this grid, the data set consisted of 13 719 sites; of these,
567 sites contained at least one incidence of smallmouth
bass and were then designated to contain smallmouth bass.
The data set was randomly divided into training and valida-
tion data sets with the same large-scale geographic coverage
in both data sets. The training data set consisted of 9602
sites, with smallmouth bass present at 396 sites. The inde-
pendent validation data was composed of 4117 sites, with
smallmouth bass present at 171 sites (Fig. 1b).

Data analyses
To better understand the relationship between the climate

variables and smallmouth bass incidence, we calculated the
incidence rate as a function of monthly mean air tempera-
ture. This was used to construct frequency plots and to
determine the lower and upper temperature ranges of small-
mouth bass incidence. As temperature regimes for each
month at any given location will be altered because of cli-
mate change, one can get an indication of the likelihood of
future smallmouth bass incidence based on the frequency
plots.

The relationship between smallmouth bass occurrence and
climatic variables (monthly mean air temperatures) was eval-
uated using stepwise multiple logistic regression, classifica-
tion tree, stepwise linear discriminant analysis, and artificial
neural networks. Statistical analyses were conducted in
SAS® (SAS Institute Inc., Cary North Carolina), with the
exception of artificial neural networks, which were per-
formed in STATISTICA® (StatSoft Inc., Tulsa, Oklahoma).
The frequency of smallmouth bass incidence approximates a
normal distribution with respect to the predictor variables.
Mean annual air temperature was simply the average of the
monthly mean air temperatures and therefore not included as
a predictor. As expected with climatic variables, monthly
mean air temperatures did exhibit high levels of multi-
collinearity, and this will impact parameter estimates.

Following the comparison of statistical approaches, we
used the statistical approach providing the best predictions
to estimate future smallmouth bass distribution in Canada
and the continental United States using monthly mean air
temperatures from 2100 based on the CGCM2–IS92a sce-
nario. The CGCM2–IS92a is the business-as-usual climate
change scenario. It uses observed greenhouse gases from
1900 to 1990, which then increase at a rate of 1% per year
until the year 2100 up to 1422 parts per million by volume.
This scenario includes the direct effect of sulphate aerosols
(Canadian Centre for Modelling and Analysis; Canadian In-
stitute for Climate Studies).

Statistical approaches to modeling binary data
Stepwise multiple logistic regression was used to predict

smallmouth bass incidence. Significance values for predictor
variables were set at a value of 0.05 to enter and remain in
the model. Species presence was designated by the tradi-

tional decision threshold of 0.50 (e.g., Olden et al. 2006). In
a logistic regression, response variables are subject to a logit
transformation, whereas predictor variables are based on a
linear combination using maximum likelihood (Olden and
Jackson 2002a).

Classification trees are generated by dividing the data into
two groups, with the division based on the predictor that
best divides the group of observations such that they are as
mutually exclusive and homogenous as possible (De’ath and
Fabricus 2000; Olden and Jackson 2002a). Each resulting
group is then evaluated as to whether it should be subdivided
based on one of the predictor variables, and this process is
repeated until some end point is reached, such as minimum
group size or depth of tree. The algorithm used in classifica-
tion trees aims to minimize misclassification rates when
dividing the data at each split (Olden and Jackson 2002a).
The classification tree performed in this study was based on
the χ2 distance. Its significance was set at p < 0.05, and the
maximum depth of the tree was set by identifying the num-
ber of leaves required to minimize the proportion of mis-
classifications. We used a cross-validation approach to
identify the maximum depth of the classification tree by us-
ing the cost complexity and reduced error pruning tools
available in SAS® with the training and validation data sets.
The assessment plot was used to identify the number of
leaves required to significantly reduce the proportions of
misclassifications.

Linear discriminant analysis finds the linear combination
of predictor variables that best discriminates between the
two groups and capitalizes on the covariation between the
predictors. In this study, groups are defined as the two
groups of locations based on their respective presence or ab-
sence of smallmouth bass (Legendre and Legendre 1998).

Artificial neural networks were based on a single-layer,
feedforward, back-propagation procedure in STATISTICA®.
The number of hidden neurons was evaluated ranging from 1
up to matching the number of input neurons (i.e., predic-
tors). The choice of model was based on the best model
maximizing the area under the receiver operator characteris-
tic (ROC) plot for the training data. Further details on artifi-
cial networks are available in Olden and Jackson (2002a,
2002b).

We used a large, independent data set to validate the se-
lected models based on the training data set. The use of in-
dependent data sets has been rare in ecological studies, but
necessary to evaluate the model and determine its generality
(Olden and Jackson 2000; Pearce and Ferrier 2000b; Ozesmi
et al. 2006). Fortunately its acceptance as a general proce-
dure in evaluating models is becoming more common. Gen-
erally, predictive power is highest on training data sets,
followed by bootstrapping, and then validation on an inde-
pendent data set (see Olden et al. 2002 for details). Without
proper validation, the model overestimates the predictive ca-
pability (Olden et al. 2002).

The relative importance of predictor variables was ranked
within each of the four statistical approaches. The utility of
each statistical approach used in this study was assessed by
calculating model sensitivity (correctly predicting presence
of smallmouth bass), model specificity (correctly predicting
absence of smallmouth bass), and overall classification rate
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(correctly predicting presence and absence of smallmouth
bass) on the independent validation data set. False presence
(bass predicted but not observed) and false absence (bass not
predicted but observed) were plotted spatially using ArcGIS
(ESRI Corporation, Redlands, California) to determine the
specific locations of the two types of misclassification and
whether particular models failed in specific regions. Since a
goal of the model comparison was to determine how well
each method performed, rather than simply show which
variables were statistically significant and their associated
coefficients, colinearity does not present the same concern
that it would in determining probabilities. However, as vari-
ables are correlated with one another, this may influence
their order of importance within any given model.

Similarity analyses using the phi coefficient were con-
ducted on the training and validation data sets to determine
how similar the four statistical approaches were at predicting
smallmouth bass incidence. The phi coefficient is a measure
of association for binary data and is not influenced by vari-
able frequency of occurrence, as are methods such as the
Jaccard coefficient (Jackson et al. 1989). This analysis com-
pared each modeling approach’s prediction for each location
rather than simply summarizing overall success as measured
by total correct classification or the confusion matrices
(Fielding and Bell 1997).

Results

Smallmouth bass incidence rates show that smallmouth
bass can be present in locations with January air tempera-
tures as cold as –21 °C and in regions with summer average
air temperatures as warm as 29 °C (Figs. 2a–2l); however,
the rates clearly identify thermal regions having greater like-
lihood of bass occurrence. The analysis was used to deter-
mine the lower and upper air temperature limits of
smallmouth bass incidence for each month of the year.

Each of the four statistical methods revealed differences in
the relative importance of climatic variables in predicting
smallmouth bass incidence. Generally, summer air tempera-
tures (June or August) were the most important variables in
predicting smallmouth bass incidence, followed by winter
air temperatures (such as February and November). Artificial
neural networks predicted that winter air temperatures were
the most important predictors of smallmouth bass incidence
(Table 1).

The four statistical approaches used in this study differed
in their performance at predicting smallmouth bass presence
and absence in locations across Canada and the United
States (Table 2). Multiple logistic regression exhibited very
low sensitivity, but very high specificity and yielded a 96.1%
overall classification rate when tested with the independent
validation data set. Multiple logistic regression predicted
that most sites would not contain smallmouth bass. Thus, the
majority of misclassification tended to be false absences
throughout the native and introduced range of the
smallmouth bass (Table 2; Fig. 3a).

Similar to multiple logistic regression results, the classifi-
cation tree model exhibited very low sensitivity, but very
high specificity and yielded a 95.9% overall classification
rate when tested with the independent validation data set.
The classification tree predicted the absence of smallmouth

bass from most sites. The majority of misclassification of
smallmouth bass incidence tended to be false absences
throughout the native and introduced range of the species
(Table 2; Fig. 3b).

Linear discriminant analysis exhibited very high sensitiv-
ity, high specificity, and an 81.2% overall classification rate
when tested with the independent validation data set. Linear
discriminant analysis tended to predict false absences out-
side the native and introduced ranges (Table 2; Fig. 3c).
However, linear discriminant analysis yielded the greatest er-
ror of the statistical approaches in predicting smallmouth
bass absence considered in our study. This approach falsely
predicted the occurrence of smallmouth bass at the lower
tips of the United States up to the Canadian Arctic. Small-
mouth bass were even predicted to be present in the Rocky
Mountain range and the island of Newfoundland (Fig. 3c).

Artificial neural networks exhibited very high sensitivity
and specificity and an overall classification rate of 90.8%
when tested with the validation data set (Table 2). The ma-
jority of misclassifications were false absences, and a small
minority of misclassifications were false presences. The ma-
jority of misclassifications occurred just outside of the native
and introduced ranges (Fig. 3d).

Assessing the overall match of the various results was
done using the phi coefficient for the training and validation
data sets (Table 3). The two data sets exhibited similar
trends across the various predictions, with the training data
set showing consistently higher coefficients of association.
All values were positive, indicating that there is a greater
match than mismatch between the predictions from all meth-
ods and the observed data. The observed data was most
highly associated with artificial neural networks, further sup-
porting that it was the best statistical approach to use on the
data set, followed by linear discriminant analysis. Results
from multiple logistic regression and classification tree were
not strongly associated with the observed data, suggesting
that they were not suitable methods for developing accurate
predictions. Predictions from the linear discriminant analysis
and artificial neural networks had a high association. Predic-
tions made with multiple logistic regression and classifica-
tion tree were also associated, but were not strongly
associated with the observed data.

Model comparison suggested that the artificial neural net-
work was the most appropriate approach to use for the data
set. Therefore, we used the model generated by artificial
neural networks in conjunction with the CGCM2–IS92a
climate change scenario data to predict smallmouth bass
distribution in 2100. We found that the majority of aquatic
systems in Canada and the continental United States are pre-
dicted to be suitable for smallmouth bass by 2100 based on
future air temperatures (Fig. 4).

Discussion

Statistical methodology
Comparison of a variety of predictive modeling ap-

proaches can provide valuable insight into the determination
of which statistical approach is the most appropriate to the
data (Guisan and Zimmermann 2000). We compared four
statistical approaches to determine which climatic variables
were the most important in determining smallmouth bass in-
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cidence. The data set was composed of binary data (presence
or absence) that contained a high frequency of absences. Lo-
gistic regression and linear discriminant analysis are tradi-

tionally the most popular statistical approaches to use with
binary data. However, if the data fails to meet statistical as-
sumptions such as multicollinearity, as appeared to be the
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Method Ranked importance of predictor variables

Multiple logistic regression June, Feb., Nov., Oct., July, May, Dec., Jan., Aug., Mar.
Classification tree Aug., Feb., Nov., May
Linear discriminant analysis June, Nov., Feb., Oct., Mar., Dec., Jan., July, Aug, May, Apr., Sept.
Artificial neural networks Nov., Feb., Jan., Dec., July, Sept., May, Aug., June, Mar., Apr.

Table 1. Relative importance of monthly mean air temperature predictor variables in predicting
smallmouth bass (Micropterus dolomieu) incidence.

Fig. 2. Smallmouth bass (Micropterus dolomieu) incidence rates as a function of monthly mean air temperature. The upper left-hand
corner of each plot specifies the lower and upper mean air temperatures required for the occurrence of at least one smallmouth bass.



case with our data set, other statistical approaches (e.g., arti-
ficial neural networks or classification trees) may be more
appropriate (Olden and Jackson 2002a).

The occurrence data were obtained through museum
sources, online databases, refereed publications, and post-
graduate dissertations. Data from natural history museums
can be incomplete, sparse, and spatially and temporally bi-
ased (Araujo and Guisan 2006; Rondinini et al. 2006), and
we supplemented the data with numerous records from the
literature, as this is a well-sampled species because of its
recreational and economic importance. We attained large
numbers of occurrence data for smallmouth bass that reflect
the current North American range of the species. Although
some of the absences may reflect lack of adequate sampling
information, they undoubtedly include areas suitable for
smallmouth bass to exist, but where bass have not been able
to colonize because of historical and current barriers to dis-
persal, such as drainage patterns of rivers.

Overall classification rate, model sensitivity, model speci-
ficity, and mapping of misclassification rates were used to
assess the predictive models generated by the four statistical
approaches on an independent data set. Overall classification
rate is generally used as either the only method or one of a
series of methods to assess predictive models; however, it
does not provide detailed information as to the true predic-
tive ability of the model in correctly predicting both the
presence and absence of a species (Olden and Jackson
2001). If we simply limited our assessment to overall classi-
fication rate, we would conclude that multiple logistic re-
gression and classification trees were the best predictive
models for the study. Upon closer inspection of the ability to
correctly predict species presence and the ability to correctly
predict absence (Pearce and Ferrier 2000b), we find that
these two models have extremely high predictive power in
assessing smallmouth bass absence, but extremely low pre-
dictive power in assessing smallmouth bass presence. The
artificial neural network model was the best statistical ap-
proach to use as demonstrated by the resemblance analyses
and exhibited very high model sensitivity and specificity, al-
though not the highest overall classification rate. Calculating
model sensitivity and model specificity, in addition to over-
all classification rate, can provide a more accurate represen-
tation of model performance (Olden and Jackson 2001).

Generally, as frequency of species occurrence increases,
model sensitivity increases and model specificity decreases.
Conversely, model sensitivity decreases as the incidence rate
decreases (Olden et al. 2002). This could result in increased
difficulty at predicting occurrences of rare species where
conservation and management are most critical (Olden and
Jackson 2001). However, there are situations in which over-
all classification rate is not a useful measure of accuracy,
and sensitivity or specificity must be considered. For exam-
ple, sensitivity may be considered to be a much more impor-
tant metric when modeling rare species or in determining
which areas are susceptible to an invasive species, and both
specificity and total classification rate may be relatively un-
important.

Mapping misclassification rates can provide additional
information when evaluating models because it spatially
identifies false presences and absences. Mapping of mis-
classification rates based on artificial neural networks sug-
gested that the majority of misclassifications occurred just
outside the native and introduced ranges. This suggests that
air temperatures may be currently suitable to permit the es-
tablishment of smallmouth bass. Artificial neural networks
tended to predict false absences within the native and intro-
duced ranges, indicating that these sites may contain suitable
environmental conditions for smallmouth bass to establish,
but that the model failed to adequately capture these condi-
tions. However, linear discriminant analysis erroneously
classified false presences throughout North America. Map-
ping the misclassification for both the multiple logistic re-
gression and classification tree showed that the majority of
misclassification tended to be false absences throughout the
native and introduced ranges of the smallmouth bass. These
methods did not accurately predict smallmouth bass pres-
ence. However, the false presences that were attained using
these approaches tended to occur in regions that may have
suitable environmental conditions for smallmouth bass to
persist given their proximity to the current distribution.

Artificial neural networks was the best statistical approach
in predicting smallmouth bass incidence across Canada and
the United States, because it exhibited very high model sen-
sitivity and specificity, high resemblance to the observed
data set, and misclassifications just outside the native and in-
troduced ranges of the species. Artificial neural networks
present many advantages compared with traditional statisti-
cal approaches, such as fewer assumptions regarding data
distributions and relationships when modeling with artificial
neural networks (Olden et al. 2006; Ozesmi et al. 2006), ro-
bustness to nonlinear response relationships, modeling of
varying data types such as continuous and discrete data, and
can simultaneously model multiple predictor variables and
their interactions without a priori knowledge and specifica-
tion (Brosse et al. 1999; Olden and Jackson 2001; Olden et
al. 2006). Artificial neural networks are appropriate when
data follow complex or unknown distributions (Pearce and
Ferrier 2000a). This may explain the superior ability of arti-
ficial neural networks with our data set in which the predic-
tor variables exhibited high multicollinearity. However,
artificial neural networks can be intensive computationally,
may encounter problems of overtraining, has been perceived
as a “black box” (but see Olden and Jackson 2002b), and is
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Method
Model
sensitivity

Model
specificity

Overall
classification

Multiple logistic
regression

9.9 99.8 96.1

Classification tree 4.1 99.9 95.9
Linear discriminant

analysis
92.4 80.7 81.2

Artificial neural
networks

91.9 90.7 90.8

Note: The validation data set was composed of 4117 sites, which con-
tained occurrence of smallmouth bass at 171 sites.

Table 2. Model sensitivity, model specificity, and overall classifi-
cation performance (all in percent) of the four statistical ap-
proaches on the validation smallmouth bass (Micropterus
dolomieu) incidence data set.



sensitive to structure of the training data set (Ozesmi et al.
2006). Relative to the other statistical approaches, it is more
difficult to ascertain the relationships between predictor
variables and their relative strength with the response vari-
able when using artificial neural networks (Brosse et al.
1999; Olden and Jackson 2002b). However, there are meth-

odologies that can be used to identify the relationships be-
tween variables in artificial neural networks such as the neu-
ral interpretation diagram (Ozesmi and Ozesmi 1999),
Garson’s algorithm (Garson 1991; Goh 1995); Lek’s algo-
rithm (Lek et al. 1996), a randomization test (Olden and
Jackson 2002b), and partial derivatives (Gevrey et al. 2006).
When data follow normal distributions and variables are un-
correlated, comparable results should be attained by artifi-
cial neural networks, multiple logistic regression, or linear
discriminant analysis (Olden and Jackson 2001, 2002a). In
these cases, a more time-efficient and parsimonious model
may be more appropriate (Ozesmi et al. 2006), and the sim-
pler approaches may be superior in minimizing overfitting
of the data. In our case, the artificial neural networks solu-
tion provided a superior predictive model. The artificial neu-
ral network model ranked the winter air temperatures as the
most important climatic variable for predicting smallmouth
bass occurrence, in contrast with the other modeling meth-
ods. This discrepancy may be due to differences in the rela-
tive emphasis placed in determining whether northern versus
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Fig. 3. Misclassification (false absence and false presence) of smallmouth bass (Micropterus dolomieu) presence or absence using four
statistical approaches: (a) multiple logistic regression, (b) classification tree, (c) linear discriminant analysis, and (d) artificial neural
networks. False absence is represented by gray circles. False presence is represented by black triangles.

Observed MLR CT LDA ANN

Observed 1 0.262 0.157 0.298 0.449
MLR 0.236 1 0.351 0.151 0.242
CT 0.268 0.337 1 0.13 0.227
LDA 0.35 0.197 0.202 1 0.5
ANN 0.504 0.245 0.288 0.564 1

Note: Results for the validation data set are presented in bold. MLR,
multiple logistic regression; CT, classification tree; LDA, linear
discriminant analysis; ANN, artificial neural networks.

Table 3. Similarity index based on the phi coefficient for the
training data set and validation data set.



southern distributions are being captured adequately, but it
may also represent that the variable interactions for the arti-
ficial neural network model captured the data relationships
in a fundamentally different way than the logistic regression,
discriminant analysis, and classification trees.

Linear discriminant analysis exhibited the highest model
sensitivity, but the lowest model specificity in predicting
smallmouth bass incidence across Canada and the United
States. Linear discriminant analysis tends to work well with
data that have covariation among the predictors and are lin-
early related to the response variable (Reichard and Hamil-
ton 1997; Olden and Jackson 2002a) — this was the case
with our data set. Although linear discriminant analysis clas-
sified false absences just outside the range of the species, it
classified false presences erroneously throughout North
America from the high Arctic to the southern tips of Florida.

Multiple logistic regression exhibited the highest model
specificity and very low model sensitivity. The approach
tended to predict that most values were absences. Although
logistic regression is widely used in ecology (Pearce and
Ferrier 2000b), it works best when the data cleanly follow a
logistic curve distribution (Pearce and Ferrier 2000a) and
may not perform well when predictor variables are corre-
lated. Analyses of our data set indicated that predictor vari-
ables exhibited high correlations, thereby violating one of
the underlying assumptions for logistic regression. The vio-
lation of collinearity in our data set may explain the poor
performance of logistic regression. However, a goal of the
model comparison was to determine how well each method
performed, rather than simply which variables are statisti-
cally significant and their associated coefficients; colline-
arity does not present the same concern that it would in
determining probabilities. However as variables may be cor-

related with one another, this may influence their order of
importance within any given model.

Classification trees exhibited the lowest model sensitivity
and highest model specificity. The approach tended to pre-
dict that almost all values were absences. Generally, classifi-
cation trees work well with complex ecological data with
missing values, nonlinear relationships, and interactions
among predictor variables (De’ath and Fabricius 2000;
De’ath 2002). However, classification trees can produce dis-
continuities in its predictions in cases where a continuous
function may be more appropriate (Austin 2002).

Smallmouth bass distribution
Air temperature has been found to be a strong predictor of

smallmouth bass distribution (Shuter et al. 1980; Dunlop and
Shuter 2006). In addition to temperature, survival and abun-
dance of smallmouth bass are dependent on factors such as
habitat availability, abundance of predators and forage food
(Olson et al. 2003), water levels, wind, nest desertion, preda-
tion, and angling pressure (Scott and Crossman 1973). Of
the climatic variables used in the study, summer and winter
air temperatures are particularly good predictors of small-
mouth bass distribution in Canada and the United States.
The incidence rate of smallmouth bass as a function of air
temperatures indicated that smallmouth bass could persist in
locations with January air temperatures as cold as –21 °C
and summer air temperatures as warm as 29 °C. This
method summarizes the temperature limit of smallmouth
bass and provides an idea of the geographic extent of small-
mouth bass with respect to air temperature under climate
change. The true incidence rates will be underestimated in
most cases because of the inclusion of all North American
regions within the calculations (i.e., areas of western North
America were also included). Bass may well be able to sur-
vive in many areas, but other factors (e.g., historical barriers)
have prevented their establishment. Therefore, we provide
these relationships as general patterns between incidence
and temperatures and not as accurate estimates of incidence
rates relative to temperature. We have identified monthly
lower and upper temperature ranges of smallmouth bass in-
cidence. The upper lethal temperature for the species is
known to be 35 °C (Scott and Crossman 1973), and feeding
has been observed to stop below 5 °C (Shuter et al. 1980).
Laboratory and field studies showed that low winter water
temperatures (i.e., <10 °C) could cause decreased activity
levels in young-of-year smallmouth bass at the northern
range. At temperatures below 7 °C, smallmouth bass begin
to search for shelter, arrest feeding behaviour, and become
inactive. As the inactivity time increases, young-of-the-year
mortality increases and is size-related, beginning with the
smallest fish (Shuter et al. 1980).

We found that summer and winter air temperatures were
the most important predictors of smallmouth bass distribu-
tion. A positive association has been found between small-
mouth bass growth and mean summer air temperature
(Shuter et al. 1980; Casselman et al. 2002; Shuter and
Ridgway 2002). Shuter et al. (1980) found that average July
air temperatures influenced the growth rate and therefore the
size of young of the year as they entered their first winter
and the possibility of winter starvation. Size of young fish is
extremely important, as larger young are able to survive star-
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Fig. 4. Prediction of potential distribution of suitable smallmouth
bass (Micropterus dolomieu) habitat in 2100 based on the artifi-
cial neural networks model and predicted air temperatures from
the Canadian General Circulation Model 2 – Scenario IS92a.
Smallmouth bass presence is indicated in black; smallmouth bass
absence is shaded in gray.



vation and winter better than smaller fish (Shuter et al. 1980;
Wismer et al. 1985). Casselman et al. (2002) found that
July–August water temperatures were positively correlated
to year-class strength of smallmouth bass. The largest year
class was produced after a very warm year, and the smallest
year class was produced after the coolest year (Casselman et
al. 2002). Temperatures in March have been correlated di-
rectly with increased probability of success and survival as
warm, early springs may result in faster growth and more
males maturing and spawning (Casselman et al. 2002).

As demonstrated in our study, smallmouth bass are viable
in regions with a wide range of air temperatures. Business-
as-usual climate change scenarios suggest that smallmouth
bass are expected to have suitable thermal habitats through
most of North America. Smallmouth bass are not expected
to be found in alpine regions and the high Arctic. We have
shown that as temperatures increase with climate change, the
range of suitable habitat will extend northwards. It is ex-
pected that the current distribution of smallmouth bass will
shift to the north because of the considerable extensions to
their native range that have occurred during the past century.
In accordance with such a climatic shift, temperatures in the
far southern United States will be too warm to support via-
ble smallmouth bass populations. By 2100, temperatures in
many additional regions of Canada will be warm enough for
viable smallmouth bass populations to exist (Chu et al.
2005; Sharma et al. 2007). The accelerated expansion north-
wards of smallmouth bass will be possible because of the
northward direction of flow for aquatic systems north of the
continental divide. At the southern extent of the range, win-
ter air temperatures may be too high and inhibit gameto-
genesis (sensu Lukšien� et al. 2000). Whitledge et al. (2006)
found that summer stream temperatures exceeding 27 °C im-
peded the growth of smallmouth bass in the Ozark streams
in Missouri. Temperatures greater than 22 °C resulted in the
displacement of smallmouth bass by largemouth bass in
Ozark streams (Zweifel et al. 1999). Furthermore, at the
southern extent of the range, summer water temperatures
may exceed 35 °C by 2100, the upper lethal temperature for
the species, thereby reducing the number of viable popula-
tions in the southern United States.

The implications of climate warming are not limited to
distributional changes. Smallmouth bass are expected to ex-
perience greater growth rates that in turn will increase the
likelihood of survival in concert with epilimnetic warming at
the northern extent of its range (King et al. 1999; Jackson
and Mandrak 2002). Year-class strength of smallmouth bass
can be increased by two–five times with a 1 °C increase in
temperature and six times with a 2 °C increase in tempera-
ture at the current northern extent of smallmouth bass distri-
bution (Casselman et al. 2002). Additionally, as the duration
of the ice-free period is reduced, the probability of bass
winterkill attributed to low dissolved oxygen levels will also
be reduced (Jackson and Mandrak 2002).

The northerly shift in the distribution of the non-native
smallmouth bass will have substantial implications on native
aquatic communities. Many factors will inevitably contribute
to regional losses of biota, including the homogenization of
the fish fauna as native cyprinids are lost (Jackson and
Mandrak 2002), greater abundance of filamentous algae be-
cause of reduction in small fishes and benthic organisms that

graze on algae (Power et al. 1985), and decreased growth
and reproduction of native lake trout populations (Vander
Zanden et al. 1999).

In conclusion, the development of predictive models is
important to understand the factors that may be contributing
to the current and potential future distribution of the species
using the best available statistical approach. Artificial neural
networks provided the most appropriate statistical approach
to use for this data set and identified winter and summer air
temperatures as the most important climatic variables for
predicting smallmouth bass occurrence across North Amer-
ica. Mapping the false absences predicted by artificial neural
networks identified areas where smallmouth bass may be
found in the near future (Vander Zanden et al. 2004b). Cur-
rently, the range expansion of smallmouth bass has been
facilitated by stocking by governmental agencies, unautho-
rized and accidental introduction by anglers, and dispersal
through drainage networks (Jackson 2002; Vander Zanden et
al. 2004a). Business-as-usual climate change data used in
the model generated by artificial neural networks predicts
that the majority of Canadian and American aquatic systems
will contain suitable thermal conditions for smallmouth bass
by 2100. Increases in air temperature will have indirect but
detrimental effects on a large number of aquatic systems by
the northward range expansion of smallmouth bass. The
spread of smallmouth bass can be reduced by intensifying
public education and regulations, which will help to limit the
potential consequences of smallmouth bass on native aquatic
communities in the future.
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