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SUMMARY

1. As a result of the role that temperature plays in many aquatic processes, good

predictive models of annual maximum near-surface lake water temperature across large

spatial scales are needed, particularly given concerns regarding climate change.

Comparisons of suitable modelling approaches are required to determine their relative

merit and suitability for providing good predictions of current conditions. We developed

models predicting annual maximum near-surface lake water temperatures for lakes across

Canada using four statistical approaches: multiple regression, regression tree, artificial

neural networks and Bayesian multiple regression.

2. Annual maximum near-surface (from 0 to 2 m) lake water-temperature data were

obtained for more than 13 000 lakes and were matched to geographic, climatic, lake

morphology, physical habitat and water chemistry data. We modelled 2348 lakes and three

subsets thereof encompassing different spatial scales and predictor variables to identify the

relative importance of these variables at predicting lake temperature.

3. Although artificial neural networks were marginally better for three of the four data

sets, multiple regression was considered to provide the best solution based on the

combination of model performance and computational complexity. Climatic variables and

date of sampling were the most important variables for predicting water temperature in

our models.

4. Lake morphology did not play a substantial role in predicting lake temperature across

any of the spatial scales. Maximum near-surface temperatures for Canadian lakes

appeared to be dominated by large-scale climatic and geographic patterns, rather than

lake-specific variables, such as lake morphology and water chemistry.

Keywords: artificial neural networks, Bayesian multiple regression, multiple regression, predictive
models, surface water temperature

Introduction

Many ecological stressors are currently affecting

aquatic ecosystems, such as invasions of non-native

species and loss of habitat, and there are uncertainties

about the extent of future climate change. Water

temperature plays an important role in several

limnological and biological processes, including ice-

cover break up (Anderson, Robertson & Magnuson,

1996), species distribution (Magnuson, Crowder &

Medvick, 1979), and the growth and survival of many

aquatic organisms, including phytoplankton (Staehr &

Sand-Jensen, 2006) and fishes (Christie & Regier, 1988;

Magnuson, Meisner & Hill, 1990; Jackson, Peres-Neto

& Olden, 2001). Ectothermic organisms have body

temperatures approximately equal to the water tem-

peratures and are particularly sensitive to water

temperature (Magnuson et al., 1990). Water tempera-

ture also influences the timing of reproduction,

development, growth, mortality, year-class strength

and metabolism of most species, including fishes
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(Shuter & Post, 1990; Tonn, 1990; Brandt et al., 2002;

Casselman, 2002). Therefore, developing a good sta-

tistical approach to model maximum near-surface

water temperature is important for comparative

studies, particularly in the face of climate change.

Lake temperature is influenced by climate, lake

morphology, water chemistry and surrounding

topography. Climatic variables such as air tempera-

ture (i.e. McCombie, 1959; Arai, 1981; Livingstone &

Lotter, 1998; Livingstone & Padisák, 2007) and solar

radiation (Kettle et al., 2004) have been shown to

influence lake thermal characteristics. Aspects of lake

morphology, such as surface area (Kettle et al., 2004),

maximum depth (Kettle et al., 2004) and mean depth

(Shuter, Schlesinger & Zimmerman, 1983; Snucins &

Gunn, 2000; Edmundson & Mazumder, 2002) have

also been identified as important predictors of

surface water temperature. Large and deep lakes

tend to be cooler than lakes that are smaller and

shallower, provided that other factors, such as

geographic location and climatic conditions, are

equal. A study of 60 Alaskan lakes found that lake

colour and turbidity were more important in explain-

ing surface water temperature than lake morphology

(Edmundson & Mazumder, 2002). Snucins & Gunn

(2000) found that dissolved organic carbon was

related to surface water temperature in 60 small

Ontario lakes (although mean daily air temperature

was the most important predictor variable), and less

clear lakes (measured as dissolved organic carbon)

had higher water temperatures.

A few studies have presented models of maximum

near-surface water temperature (e.g. Shuter et al.,

1980, 1983; Snucins & Gunn, 2000; Edmundson &

Mazumder, 2002). However, these studies were gen-

erally conducted on a small set of lakes at a small

spatial scale. In general, we found that such models

did not predict water temperature well in evaluations

using large-scale-independent data sets (S. Sharma,

unpubl. data). Large-scale climatic and geographic

patterns dominate prediction of water temperature at

large spatial scales, whereas lake characteristics such

as morphology and water chemistry may influence

water temperatures at a regional scale (Shuter et al.,

1983; sensu Jackson et al., 2001). Therefore, a compar-

ison of statistical approaches and using data sets that

vary in their spatial extent is essential to understand

how different variables influence predicted maximum

near-surface temperature at different spatial scales

and to assess the relative merits of the different

models.

The objectives of our study were twofold. Firstly,

we wanted to identify climatic, morphological, phys-

ical and chemical variables that predicted maximum

near-surface lake water temperatures most effectively

at different spatial scales. The analyses were con-

ducted using four data sets which differed in the

number of lakes, the number of predictor variables

considered and the spatial distribution of the lakes.

The second objective was to evaluate and compare the

relative strengths and weaknesses of the statistical

approaches in predicting maximum near-surface lake

water temperature. Multiple linear regression, a

widely used statistical approach, was compared with

less commonly used statistical approaches: regression

tree, artificial neural networks and Bayesian multiple

linear regression.

Methods

Data acquisition

Data describing near-surface water temperature (tem-

peratures collected between 0 and 2 m) and corre-

sponding lake morphology, water chemistry and

climatic variables were gathered from a variety of

academic and government institutions across Canada

and from numerous publications and theses. We

obtained data for 47 609 Canadian lakes of which

13 072 lakes had information on near-surface water

temperature. We included only one water-tempera-

ture value for each lake, selecting the value that was

the maximum annual near-surface water-temperature

recorded for that lake. Variables for which we

obtained data included: latitude, longitude, surface

area, volume, maximum depth, mean depth, shoreline

perimeter, altitude, water temperature (surface or

near-surface between 0 and 2 m), water-temperature

measurement depth, conductivity, Secchi depth, total

phosphorous concentration, total dissolved solids

concentration, pH, dissolved oxygen concentration

and sampling date (year and the day of year when

near-surface water temperature was measured, to

account for the intra- and inter-annual variability in

maximum near-surface water temperature). Climatic

variables were obtained from the IPCC Data Distri-

bution Centre as 1961–1990 averages. The data were

provided as interpolations from meteorological
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stations using thin-plate splines and summarized on a

0.5� · 0.5� grid. Climatic variables included: mean

annual air temperature, mean July air temperature,

monthly and mean annual precipitation, monthly and

mean annual solar radiation, and monthly and mean

annual cloud cover percentages. We calculated the

maximum number of daylight hours for each month

and an annual mean using tables provided by the

U.S. Navy (http://aa.usno.navy.mul/data/docs/

Dur_OneYear.html). Further details regarding data

acquisition and summary statistics of the data can be

found in Sharma et al. (2007).

To remove some inherent biases in spatial coverage

and missing values in the data, the data set were

pruned to 2348 lakes. We only included data collected

after 1960 between June and mid-September. The

Ontario and Nova Scotia data sets were considerably

larger than the other provinces; therefore, we only

included lakes that were sampled in July and August

as the temperatures attained from these lakes were

likely to be closer to the maximum annual near-

surface water temperature. Lakes from Ontario and

Nova Scotia were subsampled randomly while strat-

ifying for geographical distribution and lake mor-

phology.

Four different data sets were constructed that

differed in the number and types of predictor

variables, number of lakes and the spatial extent to

determine the relative importance of different predic-

tor variables at varying geographic scales (maximum

distance apart ranging from approximately 1500 to

5050 km). Variables selected were included based

on the their ecological relevance as identified in the

literature. Several factors were taken into consider-

ation when determining the inclusion of predictor

variables in the four data sets: spatial extent, sample

size and multicollinearity. The four-predictor model

was constructed such that the spatial coverage

spanned most of Canada and thus represented the

broad-scale maximum lake near-surface water-tem-

perature model. The four-predictor model also com-

prised the largest sample size and the variables with

the lowest variance inflation factor (indicating the

least amount of collinearity between predictor vari-

ables). The spatial coverage and the sample size of the

nine-predictor model was smaller, but also included

information on lake morphology and water chemistry.

This data set covered lakes in Alberta, Ontario, Nova

Scotia and Newfoundland. The 10-predictor model

also included the depth at which water temperature

was recorded, but this further reduced spatial cover-

age and sample size, containing lakes in Ontario and

Nova Scotia. The final 17-predictor model data set

incorporated information on climate, lake morphol-

ogy, water chemistry and sampling, but covered only

a subset of lakes in Ontario. Therefore, the division of

the four data sets allowed us to assess the effect of

spatial scale on the role of climate, lake morphology

and water chemistry in predicting maximum near-

surface temperature. The data sets comprising the

four-, nine-, 10- and 17-predictor variables were

divided randomly into training and validation data

sets based on a 70 : 30 split (Table 1; Fig. 1) to provide

independent evaluations of the predictive abilities of

each resulting model.

Data analyses

Multicollinearity between predictor variables were

evaluated using bivariate plots, correlation coeffi-

cients and variance inflation factors to determine

which variables to retain when collinearity was an

issue. Variables were transformed as necessary to

satisfy the assumption of normality and homoscedac-

ity. Log-transformed variables were: surface area,

maximum depth, mean depth, perimeter, altitude and

total dissolved solids. Four statistical approaches

(linear multiple regression, regression tree, artificial

neural networks and Bayesian linear multiple regres-

sion) were used.

Statistical approaches used to model continuous

response variables

Stepwise multiple-regression models based on for-

ward selection were conducted in SAS. Multiple

regression assumes a linear relationship between the

response variable and the predictors (Lek et al., 1996).

The multiple-regression models included year as a

variable to account for annual variations, i.e. year

represents a non-ordered categorical variable in the

analysis. The best stepwise multiple-regression model

for each set of maximum number of potential predic-

tor variables based on the Akaike Information Crite-

rion (AIC) was evaluated using the independent,

validation data sets. The use of independent, valida-

tion data sets provides a more realistic estimate of

model prediction error relative to the more traditional
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resubstitution approach (i.e. bootstrapping, jack-knif-

ing and leave-one-out approaches) because an inde-

pendent, validation data set tests the model using

data not used in its construction (Olden & Jackson,

2000; Sharma & Jackson, in press).

Regression trees can be calculated using both

continuous and categorical predictor variables and

aim to divide data iteratively into two homogenous

groups that have mutually exclusive memberships

while maximizing the homogeneity within the two

groups (Rejwan et al., 1999; De’ath & Fabricius, 2000;

De’ath, 2002). We performed and validated regression

trees in SAS. The significance level was set at P < 0.05

and the algorithm attempted to minimize the root-

mean-square-error at each split. Each tree was pruned

to an appropriate size based on cross-validation using

the cost-complexity and reduced-error pruning tools

available in SAS with the training data set and tested

on the independent, validation data set. Cross-valida-

tion is the preferred method as the final tree attained

using the cross-validation approach tends to have the

lowest predicted mean-square-error and should give

the most accurate prediction (De’ath, 2002). We used

the assessment plot to identify the number of leaves

required to significantly reduce the root-mean-square-

error. This produced regression trees that were still

large enough to isolate rare events. Further details on

regression trees can be obtained from De’ath &

Fabricius (2000).

Artificial neural networks are designed to mimic

the learning process of the mammalian brain and

provide a machine-learning approach to minimize

some measure of error. The influence of predictor

variables (input neurons) is modified and mediated

through their connections to a series of hidden

neurons, which in turn are connected to the response

variable (output neuron). The various pathways by

which predictor variables can be linked to the

response variable provide the potential for various

interactions between variables and nonlinear relation-

ships between predictors and the response variable.

Artificial neural networks were based on a single

hidden-layer, feedforward, back-propagation proce-

dure in Statistica. The number of hidden neurons was

evaluated ranging from one up to the number of

predictor variables. Final model selection was based

on choosing the model that had the lowest root-mean-

square-error for the training data set. Further details

on artificial neural networks are available in Olden &

Jackson (2002a,b).

Many approaches to Bayesian variable selection are

available (e.g. Kuo & Mallick, 1998; Casella & Moreno,

2006; Lunn, Whittaker & Best, 2006). We used the

simple and flexible multiple-regression approach of

Kuo & Mallick (1998). This approach has been found

to work well for several problems in statistical

genetics (e.g. Uimari & Hoeschele, 1997). The method

of Kuo & Mallick (1998), like other Bayesian variable

selection methods, is based on the posterior probabil-

ity (or probability given the data) that a given subset

of predictor variables is the best subset of the set of

predictors considered in the analysis. To calculate

posterior probabilities, prior probabilities (or proba-

bilities before data analysis) must be specified. In this

paper, the prior probability that any predictor variable

is included in the model is equal to the prior

probability that it is excluded. This objective prior

distribution avoids having our prior beliefs influence

the predictions. We implemented the method of Kuo

& Mallick (1998) in WINBUGSWINBUGS. WINBUGSWINBUGS is a freely

Table 1 Sample sizes for the training and validation data sets and parameters used in the four data sets with four, nine, 10 and 17

predictor variables

Model (km) nTraining nValidation Parameters

Four predictors (c. 5050) 1476 872 Mean annual air temperature (mat), mean July air temperature

(mjt), year and day of year (doy)

Nine predictors (c. 4450) 636 519 mat, mjt, Secchi depth, surface area (SA), doy, June daylength (Juneday),

maximum depth (Zmax), mean depth (Zmean), year

10 predictors (c. 3725) 500 438 mat, mjt, Secchi depth, SA, Zmax, Zmean, year, doy, Juneday,

measurement depth (Zmeas)

17 predictors (c. 1500) 141 127 mat, mjt, Secchi depth, SA, Zmax, Zmean, year, Zmeas, doy, Juneday,

pH, altitude, total dissolved solids (TDS), mean July precipitation (pptJuly),

mean annual precipitation (meanppt), solar radiation in July (Julyrad),

July % cloud cover (Julycloud)

The approximate maximum pairwise Euclidean distance between sites is summarized in kilometres for each data set.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Location of Canadian lakes comprising training (a, c, e and g) and validation data sets (b, d, f and h) for the four, nine, 10, and 17

predictor variable data sets.
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available software package for conducting Bayesian

analyses using Markov chain Monte Carlo numerical

methods. See Appendix S1 for details on our use of

the Kuo & Mallick (1998) approach. We refer readers

to the paper by Ntzoufras (2002) for further discussion

of Bayesian variable selection methods in WINBUGSWINBUGS.

All models were evaluated on an independent,

validation data set. Adjusted R2, root-mean-square

error (RMSE) and the median deviation between

observed and predicted values were calculated to

evaluate the models. Medians provide a more robust

estimate of the fit given that other measures are more

influenced by extreme values (Chen & Jackson, 1995).

Scatterplots were used to compare observed and

predicted maximum near-surface water temperatures

for each of the statistical approaches and the four data

sets consists of four, nine, 10 and 17 predictor

variables. This comparison was conducted to match

the relative predictive abilities of each model on the

set of independent lakes not used to construct the

models.

Results

Across all data sets, multiple-regression analyses

revealed that mean July air temperature and year

(the year during which each water temperature was

recorded) were the predictor variables that generally

explained the most variation in maximum near-

surface water temperature. Day of year (the date

when each water temperature was recorded) and

mean annual air temperature were significant predic-

tor variables, but did not account for much variation

in water temperature. Lake morphology variables,

specifically mean depth and maximum depth, ap-

peared as significant predictors only in the nine-

predictor data set and explained <1% of the variation

in water temperature. Water chemistry variables did

not play a significant role in predicting temperature

among the four data sets at any spatial scale. The

largest amount of variation explained was in the four-

predictor model that explained 77% of the variation in

water temperature, but only 34% for the 17-variable

model. The RMSE of the models with the validation

data set were all <2.7, indicating that the ‘average’

error associated with any given predicted data set

would be <2.7 �C. The median deviation ranged from

)0.21 to 0.10 �C when the models were validated on

the independent data set (Table 2). The coefficients

generated by the multiple-regression models are

presented in Table 3.

Mean July air temperature, mean annual air

temperature, year and day of year tended to be the

most important predictor variables based on the

regression tree modelling approach for the four data

sets. Lake morphology or water chemistry variables

did not appear in any of the regression trees as

significant. The four-predictor model accounted for

83% of the variation in near-surface water temper-

ature, compared with only 29% for the 17-variable

model. The median deviation ranged from )0.19 to

0.36 �C when the models were validated on the

independent data sets. However, the RMSE of the

models with the validation data sets ranged from

approximately 4.99 to 9.01, indicating considerable

error in the predictions produced. These results

showed that the models generated by the regression

trees were not good predictors of near-surface water

temperature on completely independent data sets

(Table 2).

Mean July air temperature, year, day of year and

June day length (maximum number of daylight hours

in June) tended to be the most important variables

predicting near-surface water temperatures based on

artificial neural networks. Maximum depth and mean

depth were morphological variables that were cate-

gorized as significant predictor variables in at least

one of the models, although they were not the most

important. The four-predictor model accounted for

80% of the variation in maximum near-surface water

temperature, while the 17-predictor model accounted

for only 21%. The median deviation ranged from

)0.16 to 0.14 �C when the models were validated on

the independent data sets. The RMSE was low for

three of the models but for the 17-predictor model on

the validation data set the RMSE was 3.86, indicating

relatively poor predictive ability compared with some

of the other methods. This indicates that, for this

particular case, the model was well calibrated for the

training data set but this predictive ability did not

extend to the independent data set, probably as a

consequence of the low number of observations

relative to variables (i.e. an overfitted model). There-

fore, the models generated by the artificial neural

networks were good predictors of maximum

near-surface water temperature in the independent

data sets, with the exception of the 17-predictor model

(Table 2).
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Mean annual air temperature, mean July air tem-

perature and day of year were the most important

predictor variables explaining maximum near-surface

water temperatures across the four data sets based on

the Bayesian multiple-regression approach. Maximum

lake depth was the only morphological variable that

appeared as significant in the nine-predictor variable

model. Bayesian multiple regression selected the

smallest number of predictors for all data sets. This

indicates that the Bayesian approach was conservative

with respect to including predictors in the models.

The four-predictor model accounted for 70% of the

variation in near-surface water temperatures, whereas

the other models accounted for only 30 or 35% of the

variation. The RMSE ranged from 2.45 to 2.88 and the

median deviation ranged from )0.04 to 0.29 �C when

the models were evaluated on the independent,

validation data set (Table 2).

Scatter plot summaries of the predictive modelling

approaches were used to assess how they matched up

with each another and the observed data. Scatterplots

for which the data fall entirely on the diagonal of the

plot indicate that the temperatures are identical

(Fig. 2). For the data set consisting of four predictor

variables, all four statistical approaches matched well

with the observed data. Furthermore, near-surface

water temperatures predicted by multiple regression

and artificial neural networks agreed closely. Predic-

tions generated by the regression tree and Bayesian

multiple regression appeared to be most inconsistent

with the observed data (Fig. 2a). Similar patterns

relative to the four-predictor variable data set (albeit

Table 2 Evaluation of the four statistical approaches on the (a) four, (b) the nine, (c) the 10 and (d) the 17 predictor variables model

and evaluated on the independent, validation data sets

(a)

Statistical approach

Predictor variables

retained

Adjusted

R2 RMSE

Median

deviation

Multiple regression mjt, year, doy, mat 0.77 2.66 )0.21

Regression tree mjt, mat, year, doy 0.83 6.67 )0.06

Artificial neural networks mjt, year, doy, mat 0.8 2.37 0.05

Bayesian model selection mat, mjt, doy 0.7 2.88 0.29

(b)

Model Predictor variables retained

Adjusted

R2 RMSE

Median

deviation

Multiple regression mjt, year, mat, doy, Zmean, Zmax 0.57 2.42 )0.10

Regression tree mjt, mat, year, doy 0.58 5.98 0.36

Artificial neural networks doy, year, mjt, mat, Juneday, Zmax 0.59 2.08 0.14

Bayesian model selection mat, mjt, Zmax, doy 0.35 2.60 0.13

(c)

Model Predictor variables retained

Adjusted

R2 RMSE

Median

deviation

Multiple regression year, mjt, Juneday, doy, Zmeas 0.39 2.29 )0.09

Regression tree mat, year, doy, Juneday, Zmeas 0.41 4.99 )0.09

Artificial neural networks year, doy, Juneday, mjt, Zmeas, mat, Zmax, Zmean 0.46 2.23 )0.16

Bayesian model selection mjt, Juneday, doy 0.35 2.45 )0.02

(d)

Model Predictor variables retained

Adjusted

R2 RMSE

Median

deviation

Multiple regression mat, year, pH, doy, altitude, Zmeas 0.34 2.35 0.10

Regression tree doy, mat 0.29 9.01 )0.19

Artificial Neural Networks year, Julycloud, Julyrad, pH, TDS, mjt, mat,

altitude, doy, mean ppt, Zmean, secchi, July ppt, SA

0.21 3.86 )0.01

Bayesian Model Selection mat 0.30 2.71 )0.04

RMSE, root-mean-square error.
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less robust relationships) were found in the data sets

containing nine- and 10-predictor variables, but with

increased prediction errors using the regression tree

approach. Predictions generated by multiple regres-

sion and Bayesian multiple regression were overesti-

mating low-observed values and under-estimating

high-observed values. Predictions from the 10 predic-

tor variable data set using all four modelling

approaches also revealed errors. Predictions gener-

ated by regression trees and artificial neural networks

tended to over-estimate low-water temperatures.

Conversely predictions generated by multiple regres-

sion and Bayesian multiple regression tended to

under-estimate high near-surface water temperatures

(Fig. 2b – upper triangle). For the 17 predictor variable

data set, the four statistical approaches over-estimated

low near-surface water temperatures. The greatest

amount of prediction errors were in the 17 predictor

variable data set across statistical approaches (Fig. 2b

– lower triangle).

Discussion

Statistical methodology

Statistical approaches vary in their response to differ-

ent data sets depending upon the structural properties

of the data. A statistical evaluation of a variety of

predictive modelling methods can determine which

statistical approach is the most appropriate (Guisan &

Zimmermann, 2000). Stepwise multiple regression is

traditionally the most popular statistical approach to

use with continuous data. Non-traditional approaches

such as regression trees, artificial neural networks and

Bayesian multiple regression are promising and were

evaluated here to determine their ability to predict

continuous data. We used adjusted R2, RMSE and the

median deviation from observed and predicted values

to evaluate models and to provide an estimate of their

relative strengths and weaknesses.

Overall, multiple regression performed very well

in predicting maximum near-surface water temper-

atures in the independent, validation data sets.

Multiple regression is one of the most widely used

statistical approaches in ecology and is computation-

ally simple relative to the other methods considered.

The multiple-regression model assumes that the

average of the dependent variable is related linearly

to the other variables and it performs very well

when that is the case. Whittington et al. (2006)

outlined several problems with stepwise multiple

regression, particularly with data sets containing

highly correlated variables. These included biases

in the estimation of predictor variables, overfitting of

the data, overinflation of R2, the generation of only

one ‘best’ model, problems with the algorithms used

in the analyses, and the problem of testing multiple

hypotheses. They suggested the use of the informa-

tion theoretic based on the AIC to reduce biases. We

used AIC and evaluated the model on independent,

validation data sets to eliminate potential biases in

our study. We did not use a global model (i.e.

Table 3 Coefficients for multiple-regres-

sion models predicting maximum near-

surface water temperatures

Variable 4 predictors 9 predictors 10 predictors 17 predictors

Intercept 7.95 13.27 41.41 8.44

Mean July air temperature 0.81 0.6 0.39 –

Mean annual air temperature 0.23 0.23 – 0.44

Day of year )0.02 )0.03 )0.02 )0.01

Secchi depth – – –

log Surface area – – –

June daylength – )1.59 –

log Maximum depth 2.06 – –

log Mean depth )2.08 – –

Measurement depth 0.06 –

pH 0.81

log Altitude 2.58

log Total dissolved solids –

Mean July precipitation –

Mean annual precipitation –

July solar radiation –

July % cloud cover –

The coefficients are not presented for the year term as it is a categorical variable.
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deriving the parameters with all of the predictors

present) because it can generate excess noise and

does not clearly identify the importance of predictor

variables (Whittington et al., 2006).

Artificial neural networks generally had high pre-

dictive abilities, with the exception of the 17-predictor

variable data set for which the model was over-fitted.

Artificial neural networks do not require data that

meet standard statistical distributions and are appro-

priate when the underlying distribution of data are

complex or unknown and if variables exhibit multi-

collinearity. Additionally, they are robust to nonlin-

earity and can model simultaneously multiple

predictor variables and their interactions without a

Fig. 2 Scatter plots representing comparisons between observed maximum near-surface water temperatures (i) in the validation data

sets and predicted water temperatures based on multiple regression (ii), regression tree (iii), artificial neural networks (iv) and

Bayesian multiple regression (v). The 1 : 1 line is included in each scatter plot. The upper right and lower left series of plots are

separated by the dotted line in each of panels (a) and (b). The first Roman numeral (i.e. i, ii, iii, iv or v) in each label indicates the values

being plotted on the horizontal axis and the second letter indicates the values plotted on the vertical axis throughout the panel. For

example, the plot ‘i, ii’ would present the observed temperature values along the horizontal axis versus the vertical axis being the

predicted temperature values from the multiple-regression model. In (a), the upper right part of the panel presents predictions based

on the four predictor variable data set (e.g. top, left plot in that panel shows predicted values from the multiple regression model

versus observed temperatures, i.e. plot ‘ii, i’) and the lower left part presents temperature predictions based on the nine predictor

variable data set. In (b), the upper right part of the panel presents predictions on the 10 predictor variable data set and the lower part

presents predictions on the seventeen predictor variable data set.
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priori knowledge and specification (Brosse et al., 1999;

Pearce & Ferrier, 2000; Olden & Jackson, 2001; Gevrey,

Dimopoulos & Lek, 2006; Olden, Joy & Death, 2006).

As we found with the 17-predictor variable data set,

artificial neural networks can encounter problems of

overtraining (Ozesmi, Tan & Ozesmi, 2006) when

there are few observations per variable available in

the data set. Artificial neural networks have been

perceived as a black box (Lek & Guégan, 1999; but see

Olden & Jackson, 2002b), can be computationally

intensive and sensitive to the structure of the training

data set (Ozesmi et al., 2006). It is also more difficult to

determine the relationships and the strengths of the

predictor variables with the response variable when

using artificial neural networks relative to other

statistical approaches (Brosse et al., 1999; Olden &

Jackson, 2002b). However, methodologies can be used

to identify the relationships between variables in

artificial neural networks such as the Neural Inter-

pretation Diagram (Ozesmi & Ozesmi, 1999), Garson’s

algorithm (Garson, 1991; Goh, 1995), Lek’s algorithm

(Lek et al., 1996), randomization tests (Olden & Jack-

son, 2002b) and partial derivatives (Gevrey et al.,

2006).

The coefficient of determination (R2) suggested that

the performance of regression trees was very similar

to that of multiple regression. Of all of the statistical

approaches used, the RMSE of the models with the

validation data sets was the highest for the regression

tree. These high-RMSE values show that the models

Fig. 2 (Continued).
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generated by the regression trees were not good

predictors of water temperature in independent data

sets. Regression trees can perform well on complex,

untransformed ecological data that consist of high-

order interactions, multicollinearity and nonlinear

relationships between predictor variables (De’ath &

Fabricius, 2000; De’ath, 2002), and provide graphical

interpretation of complex ecological interactions

(De’ath & Fabricius, 2000). Some studies have docu-

mented the enhanced performance of regression trees

over multiple regression (e.g. Rejwan et al., 1999;

De’ath & Fabricius, 2000). However, multiple regres-

sion will outperform regression trees in cases where

a strong linear relationship exists between the vari-

ables (De’ath & Fabricius, 2000). Furthermore, only

one mean predictive value is generated for all

samples in the same leaf, such that all lakes in a

specific leaf will have the same predicted water

temperature. Depending on how the tree is pruned

(e.g. minimum number of observations per leaf) and

the size of the data set available, this may introduce

greater amounts of error and reduces the strength of

prediction.

Generally, based on the coefficient of determina-

tion, Bayesian multiple regression underperformed at

predicting maximum near-surface water temperature.

The Bayesian models selected tended to contain few

variables, which may mean that they under-fitted the

data. Furthermore, the Bayesian analyses were com-

putationally time-consuming. The RMSE were not as

large as found for the regression trees, however,

suggesting that the models generated by Bayesian

multiple regression were better predictors of maxi-

mum near-surface water temperature than the regres-

sion tree approach. It is also important to understand

that Bayesian variable selection is currently a very

active area of research (e.g. Kuo & Mallick, 1998;

Casella & Moreno, 2006; Lunn et al., 2006). Whereas

the approach of Kuo & Mallick (1998) used here is

relatively more complex than traditional multiple

regression, it is one of the simpler Bayesian

approaches to variable selection. As work continues,

we can expect a greater understanding of variable

selection which should lead to better statistical

practice. Indeed, the fact that the very simple method

of Kuo & Mallick (1998) performed at least moder-

ately well suggests that more sophisticated Bayesian

approaches hold promise for building statistical

models to predict water temperatures.

Across the four modelling approaches used, arti-

ficial neural networks and stepwise multiple regres-

sion provided the best overall results, with the

artificial neural networks providing the lowest

RMSE in three of the four data sets. For the data

set having the fewest observations and the greatest

number of variables, the multiple-regression

approach provided the best predictive capability,

probably because of overfitting in the artificial

neural network model in this one case. Across the

four data sets these two modelling approaches

provided comparable results. Given the simplicity

of multiple regression, and the greater ease of

interpreting the model terms (see Table 3), multiple

regression can be recommended as a good method

for similar data sets. However, it is the most

sensitive of the four methods to departures from

standard statistical assumptions (e.g. multi-collinear-

ity and error distributions), so careful preparation of

the data and the use of associated diagnostics

remains essential. At present, we believe that tradi-

tional multiple regression, given its good predictive

ability with our data sets and comparative simplic-

ity, is preferable to Bayesian variable selection. The

regression tree approach proved to have the greatest

error rates associated with its predictions and

cannot be recommended.

Ecological implications

We included climatic, geographic, lake morphology

and water chemistry variables in our analyses to

determine their relative importance in predicting

lake temperatures. Previous studies had suggested

(although those models were constructed with a

small number of lakes restricted to a smaller

geographical location) that variables such as mean

depth (Shuter et al., 1983; Snucins & Gunn, 2000;

Edmundson & Mazumder, 2002), maximum depth

(Kettle et al., 2004), surface area (Kettle et al., 2004),

lake colour (Edmundson & Mazumder, 2002),

turbidity (Edmundson & Mazumder, 2002) and

dissolved organic carbon (Snucins & Gunn, 2000)

played an important role in predicting maximum

lake water temperatures, thus justifying the inclusion

of lake morphology and water chemistry variables

in our models. Our study suggested that, however,

that among all statistical approaches and data sets,

mean July air temperature and mean annual air
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temperature, day of year and year were the most

important predictor variables predicting maximum

near-surface lake water temperatures. Lake morphol-

ogy and water chemistry explained little variation in

lake temperature.

We used the IPCC 1961–1990 average values for

annual and July air temperature, which are summa-

rized on a 0.5� · 0.5� grid. The use of regional 1961–

1990 air temperature values incorporates a measure

of space, in addition to climate, and permits the use

of our predictive models with future Global Circu-

lation Models (Sharma et al., 2007). Air temperature

has been linked empirically to surface-water temper-

ature (e.g. Shuter et al., 1983; Livingstone & Lotter,

1998; Livingstone & Dokulil, 2001; Livingstone &

Padisák, 2007). We found that mean air temperature

tended to be the most important variable in predict-

ing maximum near-surface water temperature. In

addition to our study, summer air temperature (i.e.

July) has been linked to maximum surface water

temperatures in lakes in the Swiss Plateau (Living-

stone & Lotter, 1998) and Lake Superior (Austin &

Colman, 2007). Mean annual air temperature is also

an important predictor as an increase in the annual

heat input into a lake should result in an increased

maximum surface temperature (Shuter et al., 1983).

Our study did not reveal the importance of spring

air temperature in predicting maximum near-surface

water temperature, although others (e.g. Snucins &

Gunn, 2000; Austin & Colman, 2007) have found that

the highest summer water temperatures tended to be

recorded in years that had relatively warmer springs.

The rapid increase in spring heating may lead to

higher water temperature (Snucins & Gunn, 2000)

suggesting that intra-annual variability in air tem-

peratures may play an important role in predicting

lake temperature.

Day of year and year tended to be very strong

predictors of maximum near-surface lake water

temperature indicating that conditions related to

the sampling period within the summer season or

year were influential. Examination of water temper-

atures among years suggests that, since 1960, there

has been a trend of increasing water temperature

across Canadian lakes (Sharma et al., 2007) which

matches the general findings of others (e.g. French

et al., 2006; Austin & Colman, 2007). Ideally, air

and water temperature would have been recorded

simultaneously, but this was not possible. However,

small-scale daily fluctuations in air temperature may

have also simply provided additional noise in the

analysis rather than picking up longer term signals.

If air and water temperatures could have been

measured concurrently, or appropriate air tempera-

ture time lags incorporated (sensu Matuszek &

Shuter, 1996; Kettle et al., 2004), air temperature

may have been an even better predictor of lake

temperature, thereby reducing the importance of day

and year as predictor variables.

Across spatial scales, lake morphology played little

role in predicting water temperature. Previous stud-

ies (e.g. Shuter et al., 1983; Snucins & Gunn, 2000;

Edmundson & Mazumder, 2002) incorporated lake

morphology into their models, although these models

explained little variation in near-surface water tem-

perature. These models were generally developed on

data sets with few observations and encompassed

lakes spread over smaller areas than our study. We

hypothesize that, at smaller spatial scales, lake

morphology would be of greater importance in

explaining maximum near-surface water tempera-

tures than was found in our large-scale comparisons.

Even our most geographically restricted data set

encompassed lakes several hundred kilometres apart.

Therefore, it appears that water temperature was

dominated by large-scale-driving variables, such as

climate or patterns in covariation of lake size with

geography (e.g. the largest lakes tend to follow the

diagonal southern boundary of the Canadian Shield).

The relative importance of variables such as lake

morphology and water chemistry tend to be empha-

sized at local scales where there is a more limited

range in climate and radiation (sensu Jackson et al.,

2001).

The development of an effective predictive model

to determine maximum lake near-surface water

temperature is important for our understanding of

lakes as ecological systems. In addition, water-

temperature models can incorporate Global Circula-

tion Models to predict the effects of climate change

on future maximum lake temperature. Thus, Sharma

et al. (2007) incorporated a variant of the multiple-

regression model and air temperature predictions

from the Canadian General Circulation Model 2 to

predict maximum lake near-surface water tempera-

ture and the thermal habitat of smallmouth bass

(Micropterus dolomieu Lacépède) in Canadian lakes in

2100.
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