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Studies in biodiversity-ecosystem function and conservation biology have led to the development of diversity indices that
take species’ functional differences into account. We identify two broad classes of indices: those that monotonically
increase with species richness (MSR indices) and those that weight the contribution of each species by abundance or
occurrence (weighted indices). We argue that weighted indices are easier to estimate without bias but tend to ignore
information provided by rare species. Conversely, MSR indices fully incorporate information provided by rare species but
are nearly always underestimated when communities are not exhaustively surveyed. This is because of the well-studied fact
that additional sampling of a community may reveal previously undiscovered species. We use the rarefaction technique
from species richness studies to address sample-size-induced bias when estimating functional diversity indices. Rarefaction
transforms any given MSR index into a family of unbiased weighted indices, each with a different level of sensitivity to
rare species. Thus rarefaction simultaneously solves the problem of bias and the problem of sensitivity to rare species. We
present formulae and algorithms for conducting a functional rarefaction analysis of the two most widely cited MSR
indices: functional attribute diversity (FAD) and Petchey and Gaston’s functional diversity (FD). These formulae also
demonstrate a relationship between three seemingly unrelated functional diversity indices: FAD, FD and Rao’s quadratic
entropy. Statistical theory is also provided in order to prove that all desirable statistical properties of species richness

rarefaction are preserved for functional rarefaction.

Walker et al. (1999) and Petchey and Gaston (2002)
rekindled interest in developing indices of diversity that
take into account ecologically relevant functional differences
between species (Mason et al. 2003, 2005, Petchey et al.
2004, Ricotta 2004, Mouillot et al. 2005, Botta-Dukat
2005, Petchey and Gaston 2006, 2007, Podani and
Schmera 2006). These functional diversity indices are
motivated by the intuitive notion that, given constant
species richness across a group of communities, the
community with the most functionally similar species
should be considered the least diverse of the group.

Not surprisingly, many different functional diversity
indices have been proposed. They can be roughly divided
into two types. Indices of the first type are characterized by
the following intuitive property: they do not increase if a
species is removed from the community and do not
decrease if a species is added to the community (Petchey
and Gaston 2006). Diversity indices with this property are
said to be monotonically increasing with species richness
(hereafter referred to as MSR indices). Examples of MSR
indices include functional group richness, functional attri-
bute diversity (FAD, Walker et al. 1999) and functional
diversity (FD, Petchey and Gaston 2002). Indices of the
second type are weighted by abundance or occurrence
(hereafter referred to as weighted indices). Weighted indices
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tend to have a weaker correlation with species richness than
MSR indices. Examples of weighted indices of species
diversity are Simpson’s and Shannon’s index. Examples of
weighted functional diversity indices include Rao’s (1982)
quadratic entropy, FDvyar (Mason et al. 2003) and
Ricotta’s (2004) expected taxonomic distinctiveness.

We highlight two major differences between MSR and
weighted indices that are central to our paper. First,
weighted indices are relatively insensitive to rare species
whereas MSR indices are sensitive to rare and common
species. Therefore, weighted indices may be more appro-
priate when rare species tend to be functionally unim-
portant. However, there may be many ecosystem functions
that are highly sensitive to rare species. Power et al. (1996)
provided for an excellent review of such ecosystem func-
tions. For example, experimental evidence suggests that the
removal of rare species can increase the susceptibility of
grassland communities to invasions (Lyons and Schwartz
2001). Furthermore, rare species can be important in
maintaining ecosystem function through periods of envir-
onmental change (Walker et al. 1999). In summation,
weighted and MSR indices are likely to be complementary
to one another, not competitive.

Second, weighted indices generally will be less biased
than MSR indices. Because MSR indices are, by definition,



monotonic with species richness, they will always be
underestimated if sampling effort is low. The reason for
this is identical to the reason why observed levels of species
richness underestimate community-level species richness
when sampling effort is low; there may be some species to
be discovered in the portions of the community that have
not yet been sampled. We refer to this problem as a sample-
size-induced bias. This problem of sample-size-induced bias
is not likely to be an issue in highly controlled experiments
of small spatial extent (e.g. Cedar Creek experiments,
Tilman et al. 1997). This result is because small areas are
easily surveyed exhaustively and the species composition
itself has been manipulated and therefore need not be
estimated. Recently however, there has been increasing
interest in investigating the implications of these small-scale
experimental results for the relationships between biodiver-
sity, ecosystem functioning and climate at larger scales and
in more naturally assembled communities (Loreau et al.
2001, 2003, Naeem and Wright 2003, Symstad et al. 2003,
Cardinale et al. 2004, Tylianakis et al. 2006). However,
typically it is not possible to exhaustively sample commu-
nities of large spatial extent. Weighted indices have the
advantage of being easy to estimate in a relatively unbiased
manner but largely ignore information provided by rare
species; on the other hand, MSR indices take full advantage
of the information provided by rare species but are difficult
to estimate in an unbiased fashion.

In our paper, we show how the rarefaction technique
(Sanders 1968, Hurlbert 1971, Smith and Grassle 1977,
Colwell et al. 2004) from species richness studies can
simultaneously address the problem of bias in MSR indices
and unify MSR and weighted indices into a framework
familiar to community ecologists studying species diversity.
This technique allows researchers to make unbiased
estimates of diversity that take full advantage of the
statistical information provided by rare species. Specifically,
we make the following contributions. First, we define
rarefaction in a general sense so that it can be applied to
functional diversity indices; this is necessary because
rarefaction has been used almost exclusively to measure
species and taxonomic diversity. This development allows
us to prove that all desirable statistical properties of species
richness rarefaction are preserved for functional rarefaction.
Second, we review two well-known MSR indices, FAD and
FD, and the two most common sampling models used in
species richness rarefaction. Third, we present formulae and
algorithms for conducting a functional rarefaction analysis
with these indices and sampling models. This allows us to
show that weighted indices arise naturally from the
rarefaction of an MSR index. Specifically, we show that
Rao’s (1982) quadratic entropy arises from both FAD and
ED rarefaction. Finally, as an example, we use functional
rarefaction to analyze changes in the functional diversity of
birds at the Hubbard Brook forest. Through the example,
we also show how to use dimension-reduction techniques to
check if functional rarefaction analyses are misleading.

The conceptual framework of generalized rarefaction

Previously, rarefaction has only been applied to species
richness, S. Therefore, it is necessary to generalize the

notion of rarefaction before we can apply it to functional
diversity indices. Generalized rarefaction provides a frame-
work for developing rarefied versions of other functional
diversity indices not covered here and allows us to prove
that the statistical properties of species richness rarefaction
are preserved for functional rarefaction. Readers who are
familiar with the rarefaction approach and who are not
concerned with the theory of why rarefaction works in
general may skip this section without loss of continuity.

We consider a generalized MSR diversity index, D, and a
generalized sampling model which involves selecting (ran-
domly or otherwise) v sampling units (hereafter referred to
as units) from a community. The diversity index, D,
represents the true unknown diversity of the entire com-
munity. We wish to estimate D by taking v sampling units
from the community. In typical statistical settings we would
use the information in the sample to make inferences about
the entire community. Unfortunately, it is very difficult to
use the diversity of a sample, D, to make inferences about
D because the species list in the sample will typically be
shorter than the species list in the community. Therefore,
the estimation of D must be made by extrapolation.
Extrapolation, while necessary for estimating the diversity
of entire communities of large extent, can be as dangerous
in diversity estimation as it is in linear regression (Mao and
Colwell 2005).

If one is more interested in comparing diversities across
communities than in estimating the diversity of entire
communities, the rarefaction technique (sometimes called
interpolation) is often more accurate than extrapolation
techniques (Colwell et al. 2004). The main idea behind
rarefaction is to shift interest from the diversity of the entire
community, D, to the expected diversity, (D,,», in p units.
This expected diversity, {D,,», is referred to as the true
rarefied diversity and [ as the rarefied sample size. Like D,
(D) is an unknown community-level quantity. However,
unlike D, one can determine an unbiased estimator of
(Dyy if p is no greater than v (which is the size of the
sample actually taken from the community). If we assume
that v >, and that the v units were randomly sampled in
an independent manner, an unbiased estimator of (D> is
the expected diversity, (D,), in a sub-sample of p units
without-replacement from the original sample of Vv units
(see Appendix A for a proof). This result follows from an
appropriate generalization of the work of Smith and Grassle
(1977). The restriction of random and independent
sampling can be removed (Appendix A). This expected
diversity, (f)p>, is referred to as the sample rarefied
diversity. Furthermore, for all specific cases considered in
the following sections, <f)|u> is the best unbiased estimator
of {(D,» in the sense that it has the smallest sampling
variance of all unbiased estimators (see Appendix A for a

proof).

Functional diversity indices and sampling models

In the previous section we considered a generalized diversity
index and sampling model. In applied settings, we need to
define specific indices and sampling models in order to
derive practical formulae and algorithms.
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Functional diversity indices

We apply generalized rarefaction to two well-known MSR
functional diversity indices: functional attribute diversity,
FAD, of Walker et al. (1999) and functional diversity, FD,
of Petchey and Gaston (2002). These indices are both based
on the idea of functional trait space. Consider a community
composed of S species that are characterized by T functional
traits. Let the value for trait t=1,...,T for species
i=1,...S, be X;.. The S-by-T functional trait matrix, X,
has X, as elements. The ith row of X specifies the point in
functional trait space that characterizes species i.

The FAD of a community is the total of all pair-wise
distances between species in functional trait space. Let d;; be
the distance between the points that characterize species i
and j in functional trait space. For simplicity we take dj; to
be the Euclidean distance in this paper but many other
choices are possible (see for example Legendre and Legendre
1998). FAD is simply given by the sum of the pair-wise
distances between species (Walker et al. 1999),

FAD = " d;

i>j

Petchey and Gaston’s (2002) FD cannot be written
compactly in terms of the pair-wise distances between
species. FD is the total length of all of the branches of a
dendrogram derived from the functional trait matrix, X.
Before FD can be calculated, a distance measure and
clustering algorithm must be chosen; different choices
give different results (Podani and Schmera 2006). Here
we use Euclidean distances and an unweighted pair group
method with arithmetic mean (UPGMA) to calculate
branch lengths.

Petchey and Gaston (2006) emphasized the following
difference between FD and FAD. Consider a species, As,
that is functionally identical to a species that is a member of
a particular community, Ac. If species Ag is added to
community Ac, the FD of Ac is unchanged. Furthermore,
if Ag is very similar, but not identical, to one or more
species in Ac, FD will only increase a small amount if Ag is
added to Ac whereas FAD will increase a larger amount.
These properties of FD and FAD imply that FD is
insensitive to redundant species whereas FAD is sensitive
to redundant species. In our opinion, the sensitivity or
insensitivity to redundant species cannot be used to argue
for the general use of a particular index without considering
the context of the study. The goals of the study and the
nature of the study system need to be taken into account
when deciding which functional diversity indices to use. For
example, redundant species can help buffer the impacts of
species loss on ecosystem function (Walker et al. 1999).
Therefore, FAD might be a more appropriate index of the
resilience of a community in the face of environmental
change. However, redundant species are less likely to be
important for maintaining ecosystem function in the short
term. Therefore, FD might be more appropriate for
measuring the aspects of functional diversity that have the
potential to immediately impact ecosystem functioning.
Another difference between FD and FAD is that FD
requires the subjective choice of a clustering algorithm in
addition to a distance measure whereas FAD only requires
the choice of a distance measure (Petchey and Gaston
2006). Our purpose here is not to argue in favor of either
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index, but rather to develop sound methods of inference for
each. With the inferential tools that we develop here,
researchers will be better able to evaluate the properties of
each measure in the light of field data.

Sampling models

Following Gotelli and Colwell (2001), we consider two very
common forms of data: abundance data and sample data. In
doing so, the abstract concept of sampling effort is made
more practical by measuring it in units of individuals (for
abundance data) or plots (for sample data). Each type of
data is modeled using a multinomial distribution.

For abundance data, consider a random sample of N
individuals from a community containing S species. Each
individual is identified to species. This model is a special
case of our generalized sampling model. Sampling effort is
measured in units of individuals (v =N). We wish to
estimate the expected diversity, <D,,», in n <N individuals
(L=n). We estimate {D,) with the expected diversity,
(D,), in a sub-sample, without replacement, of n indivi-
duals from the original sample of N individuals.

For sample data, consider a random sample of M plots
(or quadrats, mist nets, pheromone traps, etc.) from a
community containing S species. Because the community
contains S species, each plot could be characterized by one
of the 2° possible species lists (or 2° — 1 species lists if the
sampling method ensures that at least one species is sampled
in every plot). For convenience, we give an index, k=1,. . .,
25, to each of the possible species lists. It does not matter
how the species lists are numbered as long as we are
consistent. This model is also a special case of our
generalized sampling model. Sampling effort is measured
in units of plots (v =M). We wish to estimate the expected
diversity, (D>, in m <M plots (L =m). We estimate
{D,,» with the expected diversity, (D, ), in a sub-sample,
without replacement, of m plots from the original sample of
M plots.

The sample-based model is, in a sense, more informative
than the abundance-based model. This is because by
allowing the possibility of sampling more than one
individual at a time, the data from the sample-based model
contains information on the spatial co-occurrence of species
at the grain of the plot (Colwell et al. 2004). In contrast,
data from the abundance-based model only provides
information on the abundances of the species.

Functional rarefaction

We apply generalized rarefaction to the measurement of
functional diversity. All of the results presented in this
section follow directly from the generalized rarefaction
framework, the two sampling models and the definitions of
FAD and FD.

Formulae and algorithms

We describe the formulae and algorithms that are required to
conduct a functional rarefaction analysis of field data.
Comparisons with the more familiar species richness
rarefaction are made to further illustrate how functional
rarefaction is related to species richness rarefaction; however,



the formulae for species richness rarefaction were originally
derived by Hurlbert (1971), Ugland et al. (2003) and
Colwell et al. (2004). Proofs and derivations of formulae
are given in Appendices A and B. MATLAB code is available
from the first author upon request.

We have organized our results in Table 1 where its
organization reflects the relationships between the types of
rarefaction analysis and their relationship with the general-
ized rarefaction framework. Table 1 organizes 12 computa-
tional recipes (eight formulae and four algorithms). Each of
these 12 recipes is categorized in three ways: by diversity
index (D =S, FAD or FD), by sampling model (abun-
dance-based or sample-based) and by statistical setting
(unknown true rarefied diversity or known sample rarefied
diversity). Because rarefaction is most useful when we have
not sampled the entire community, the formulae and
algorithms for true rarefied diversities will not be used in
most applied settings. The definitions of the symbols used
in Table 1 are presented in Table 2.

We were unable to find useful formulae for calculating
rarefied FD indices. Instead we describe simple Monte
Carlo algorithms for approximating these quantities
(Table 3). Algorithms A and C amount to simulating the
sampling process for (FD,» and for {FD,,) from the
abundance-based model and the incidence-based model
respectively. Algorithms B and D amount to sub-sampling
individuals and plots respectively, without replacement,
from the original sample. The Monte Carlo sample average
for each of these algorithms is approximately equal to the
FD index of interest. The approximations improve as the
number of Monte Carlo samples increases.

We use a simple bootstrap to calculate confidence
intervals for each of the six types of rarefaction estimates
in Table 1 (see Appendix C for details). Researchers likely
will be more interested however in examining how rarefied
functional diversity indices are related to a covariate of
interest rather than simply putting confidence intervals on
the points of a rarefaction curve. For example, we may wish
to ask: is (FD,) linearly related to an environmental
variable that characterizes each of the communities? In
Appendix C, we describe a simple bootstrap to calculate the
confidence interval of the slope of a least-squares linear
regression of a rarefied diversity index on a covariate of
interest. We use this procedure in our Hubbard Brook bird
community example. Note that this bootstrap procedure
can be used for most regression models.

Unifying MSR and weighted functional diversity indices
It is known that the abundance-based rarefaction of species
richness yields a family of weighted indices. For example,
when species richness is rarefied, Simpson’s (1949) index is
recovered as {S,)» —1 (Smith and Grassle 1977). As the
rarefied sample size, n, increases from 2, weighted indices are
obtained that are progressively more sensitive to rare species.
As n further increases to infinity (or to the total number of
individuals in the community), species richness is obtained.
Thus rarefaction unifies species richness and weighted species
diversity indices such as Simpson’s (1949) index.

The effect that the rarefied sample size has on the
sensitivity to rare species is preserved in generalized rarefac-
tion. For example, consider Rao‘s (1982) quadratic entropy,

Table 1. Summary of computational formulae and algorithms for rarefaction analysis.
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The table is organized in three ways: 1) individual- versus sample-based, 2) community- versus sample-level and 3) diversity index (S, FAD or FD). All symbols in the table are defined in the main text and
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in Table 2. The individual-based formulae for species richness were originally derived by Hurlbert (1971). The sample-based formulae for species richness were originally derived independently by

Ugland et al. (2003) and Colwell et al. (2004).
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Table 2. Definitions of variables related to the rarefied diversity indices in Table 1 and Appendix A.

Type of variable Variable Description
Non-rarefied diversity indices D a generalized diversity index for the entire community
(see Table 1 for rarefied indices)
D a generalized diversity index for the sample
FAD functional attribute diversity for the entire community
FAD functional attribute diversity for the sample
FD Petchey and Gaston’s functional diversity for the entire community
FD Petchey and Gaston’s functional diversity for the sample
Q Rao’s quadratic entropy for the entire community
S total number of species in the entire community
S total number of species in the sample
Functional trait information djj distance between species i and j in functional trait space
T total number of functional traits
Xit value of functional trait t for species i
X functional trait matrix (with the Xj; as elements)
Abundance-based sampling model n rarefied sample size in units of individuals
N sample size in units of individuals
N; observed number of individuals in species i
pi probability that a randomly selected individual belongs to species i
Sample-based sampling model m rarefied sample size in units of plots
M sample size in units of plots
My observed number of plots with species-list k (species-list abundance)
qi probability that a randomly selected plot contains species i
qjj probability that a randomly selected plot contains species i,j or both
M probability that a randomly selected plot contains species-list k
Y observed number of plots with species i
Yij observed number of plots with species i,j or both
Generalized sampling model 0 the parameters for the generalized sampling model
n rarefied sample size under the generalized sampling model
v sample size under the generalized sampling model
v a sample from the generalized sampling model

Q, a weighted index. Q is the expected distance in functional
trait space between two randomly selected individuals from
the community. It follows that Q is equal to (FAD,) for
abundance data. We also have that 2Q is equal to {(FD,).
This follows because there must be at least be three species for
clustering to occur in a dendrogram; hence, the FD of a two
species community is simply equal to two times the distance

Table 3. Algorithms for calculating the four rarefied forms of FD.

between the two species in functional trait space. This result
demonstrates a strong connection between three seemingly
unrelated functional diversity indices, FAD, FD and Q.
Weighted indices also arise naturally from sample-based
rarefaction. Thus, functional rarefaction unifies MSR and
weighted indices in a manner that takes advantage of the
strengths of each type of index.

A]gonthm A: approximating {FDp»

Generate a species list for a random sample of n individuals based on the species probabilities, p;, i =1,...S.

2 Calculate the FD for this species list.

3 Repeat many times.

4 {FD,) ~the average of the randomly generated FD.
go

1

Algorithm B: approximating (FD,)

Generate a species list for a random sample of n individuals, without replacement, from the individuals

that were sampled from the community.

Calculate the FD for this species list.

Repeat many times.

(FD,) ~the average of the randomly generated FD.

Algorithm C: approximating {FDy,»

Calculate the FD for this species list.

Repeat many times.

{FDp,» &the average of the randomly generated FD.

B W =00 AW

Algorithm D: approximating (FD,,)

—Q0Q

from the community.

Calculate the FD for this species list.

Repeat many times.

{FDm» ~the average of the randomly generated FD.

nwnN

Generate a species list for a random sample of m plots based on the species list probabilities, i, k=1,...,2°.

Generate a species list for a random sample of m plots, without replacement, from the plots that were sampled
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Example: Hubbard Brook bird community

To exemplify how rarefaction can be used to correct for
sample-size differences in the comparison of communities
based on functional diversity, we analyze a bird community
data set from Hubbard Brook forest (Holmes and Sturges
1975, Holmes et al. 1979). As this is a very large data set,
we use only the species abundances from samples collected
in late spring between 25 June and 9 July for the years 1969
to 1973 (Holmes and Sturges 1975). Holmes et al. (1979)
provided a functional trait matrix with 27 foraging behavior
traits. This matrix was used by Petchey and Gaston (2002)
to exemplify the use of FD as a functional diversity index.

As an example research question we ask: does late spring
bird diversity (as measured by S, FAD and FD) decline
between 1969 and 1973 in the Hubbard Brook forest?
Because the number of individuals surveyed varied from
year to year (range =234 to 355), abundance-based
rarefaction is required before the relationship between
year and functional (or species) diversity can be studied.
We estimate <S,,>, (FAD, > and {<FD, ) for n =2 and 150.
Given <{FD,) =2({FAD,)», we compute (FAD,>=Q,
where Q is Rao’s (1982) quadratic entropy, and not
{FD;). This results in five diversity indices. We did not
choose the rarefied sample size, n, to be too close to the
sample size of the year with the smallest sample size (1973,
n =234) because the bootstrap sampling distributions were
skewed for those values of n for some communities (see
Appendix C for a discussion of the importance of
symmetric bootstrap distributions). We compute bootstrap
confidence intervals for each of the five indices for each year
and bootstrap confidence intervals for the least-squares
slope of the linear regression model with year as the
independent variable (Appendix C).

We now provide a rationale for choosing these five indices
and a framework with which to interpret ecologically the
results. For this purpose, we characterize each of the five
diversity indices using three properties. First, {(FAD,),
{FADjs50) and (FDjs¢) are sensitive to the magnitude of
species differences in trait-space whereas <S,) and <{S;s¢)
are not. Second, <8150>, <FAD150> Z.Ild <FD150> are
relatively sensitive to rare species whereas S,) and (FAD,)
are not. Third, (FAD,», <FAD 50>, {S,)> and <S;5¢) are
relatively sensitive to functionally redundant species whereas
{FDjs50) is not. Therefore, these five indices collectively
should provide reasonable sensitivity to several important
aspects of functional and species diversity.

The slope of the least-squares regression line for all five
indices was negative (Fig. 1) indicating a decline in
diversity, no matter how it is measured. However, only
three of the slopes were significantly different from zero:
{82, {8150, and (FAD;5¢y. These results suggest a fairly
clear ecological interpretation. Late spring bird diversity was
most likely declining in the Hubbard Brook forest between
1969 and 1973. This is evidenced by the estimated negative
slope for all five diversity indices regressed against year.
Because we are using more than one type of diversity index,
we can make more detailed conclusions. Two results lead to
the conclusion that it is largely the functionally redundant
species that are being lost over time. First, the only index
that is insensitive to redundant species, (FDs0, did not
show a significant decline. Second, three of the four indices

that are sensitive to redundant species did show a significant
decline.

Despite the fact that some common species are
becoming less common over time ({S,) is significantly
declining), we did not detect a significant decline in the
functional differences between common species (as mea-
sured by (FAD,)»). This suggests that the common species
that become less common over time are not sufficiently
unique with respect to their functional traits to result in a
significant decline in {FAD,). However, overall our
results suggest that late spring bird diversity was declining,
in the Hubbard Brook forest between 1969 and 1973,
largely because of losses of, and declines in, redundant
species.

While summary statistics, such as rarefied diversity
indices, are invaluable tools for describing and making
inferences about complex data, we should always check that
they are not misleading. To verify our conclusion that
observed diversity declines largely result from losses in
redundant species, we look at the data more closely. Since,
the estimated slope of the {S;5¢) regression is approximately
—0.57, this indicates that roughly two species have been lost
from samples of 150 individuals over the study period.
Therefore, if our conclusions are correct, the two least
abundant species in 1973 should be close, in some sense, to
other species in functional trait space; this would indicate the
species being lost are redundant in terms of the 27 functional
traits measured. Because the functional trait space has 27
dimensions, it can not be easily represented on graph paper.
We therefore used principal coordinates analysis (PCoA)
with the Euclidean distance measure to reduce the dimen-
sionality of the trait space to two axes (Gower 1966); note
that a PCoA with Euclidean distances is equivalent to a
principal components analysis (PCA) on the observed
covariance matrix (Jackson 1993). The Euclidean distance
is appropriate since we used this measure to calculate FAD
and FD. The first two PCoA axes account for 67% of the
variation between species in functional trait space. The 22
bird species are plotted on this reduced functional trait space
(Fig. 2). This plot clearly shows that the two least abundant
species in 1973 are quite similar to other species that have
persisted over the study period. Therefore, the conclusions of
the functional rarefaction analysis appear to be appropriate.

Discussion

We have demonstrated how to use the rarefaction technique
to correct for sample-size-induced biases in the estimation
of two functional diversity indices, FAD and FD. For the
first time, we now have a method for comparing these
functional diversity indices between natural communities of
large spatial extent, in a manner that takes advantage of the
statistical information in rare species, in the common
situation when there is variable sampling effort between
communities. This opens new possibilities for researchers as
these types of studies are likely to become more frequent as
interest grows in questions about how the insights gained
through the plot-scale biodiversity-ecosystem function
experiments of the last 10 to 15 years will scale up to
larger spatial extents (Loreau et al. 2001, Naeem and
Wright 2003, Symstad et al. 2003).
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Fig. 1. Changes in the functional and species diversity of the eatly spring bird community in Hubbard Brook forest between 1969 and
1973. Five diversity indices are used: {S,), <FAD,», {S150), {FAD;50» and {FD;s0). Dots and error bars are estimated levels of
diversity with 95% bootstrap confidence intervals. Lines are least-squares lines. The slopes of these lines are given along with 95%
bootstrap confidence intervals. An asterisk indicates significance in the sense that the confidence interval does not overlap a slope of zero.

Much of the previous work on functional diversity
indices focused on the relative strengths and weaknesses of
the various indices (Naeem and Wright 2003, Petchey and
Gaston 2006, 2007, Podani and Schmera 2006). We have
intentionally avoided picking one side or the other in this
debate, but rather focused more on developing methods of
statistical inference about the various indices. By avoiding
this debate, we were also able to demonstrate three practical
techniques of statistical analysis. First, we showed how to
investigate the relationship between rarefied functional
diversity indices (in this case for a bird community) and a
covariate of interest (in this case time). Walker et al. (1999)
studied the relationship between FAD and distance from a
water source in Australian rangelands. However, they were
unable to make any statistical inferences from these data.
Our functional rarefaction methods make such inferences
possible. Second, we showed via the bird community
example, how various indices are complementary; each of
the five indices that we used quantified different aspects of
community structure. Third, we used PCoA to visualize
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functional trait data for the purpose of corroborating
conclusions drawn from an analysis of functional diversity
indices.

In addition to this practical approach, we provided a
theoretical basis for why rarefaction works in general. To do
this, we developed a mathematical framework of generalized
rarefaction, which contains classical species richness rarefac-
tion as a special case (Sanders 1968, Hurlbert 1971, Smith
and Grassle 1977, Colwell et al. 2004). Using generalized
rarefaction, we proved that the rarefaction of any diversity
index shares the same statistical properties as species
richness rarefaction; in particular generalized rarefaction
always yields unbiased estimates of rarefied diversity indices.
Furthermore, rarefaction estimators are also the best of all
unbiased estimators in the sense that they have minimum
sampling variance if certain rather mild technical conditions
are met (Appendix A). The well-studied relationship
between the sensitivity to rare species and the rarefied
sample size is also preserved through the generalization of
rarefaction to all MSR indices; in particular, indices become
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Fig. 2. Principal coordinates analysis (PCoA) of the functional trait
matrix for the Hubbard Brook forest. The two least-abundant
species in 1973 are squares, all other species are circles. Note how
close these two rare species are to other species in functional trait
space; this reinforces the conclusions drawn from functional
rarefaction analysis that the diversity decline shown in Fig. 1 is
largely due to losses in redundant species.

less sensitive to rare species as the rarefied sample size
decreases. Therefore, rarefaction unifies MSR and weighted
indices. For example, we showed that Rao’s quadratic
entropy, Q, an index that is relatively insensitive to rare
species, is equivalent to a rarefied form of both FAD and
FD.

Our work extends, generalizes and enhances previous
work on bias and rarity in functional diversity indices. Bady
et al. (2005) studied bias in Rao’s (1982) quadratic entropy,
Q. Calculating Q requires the relative abundances of the
species in the community and the pair-wise distances in
functional trait space between those species. To estimate Q,
Bady et al. (2005) simply substituted the relative abun-
dances of the species in the sample. They conjectured that
this estimate is slightly biased but that the bias quickly
disappears with more sampling effort. The basis for this
conjecture was the observation that estimates of Q leveled
off with sampling effort for the invertebrate community
that they analyzed. In this paper, we prove that (FAD,)
(Table 1) is an unbiased estimate of Q, which is equivalent
to (FAD,), for abundance-based rarefaction. In fact, our
work highlights the benefits of using indices, such as Q =
(FAD,), for which unbiased estimators exist. Ricotta
(2004) developed a new family of functional diversity
indices called expected taxonomic distinctiveness. This
family of indices is a special case of the generalized
rarefaction approach taken here. However, it differs from
the present work in several important respects. First, a
statistical treatment is not given. In particular, sampling
variability and hypothesis testing are not considered and
only the unknown community-level indices are discussed,
which are biased if communities are not exhaustively
sampled. Second, only one index is considered for rarefac-
tion: the taxonomic distinctiveness. Third, no recommen-

dations or examples are given on how to interpret analyses
based on expected taxonomic diversities.

Sampling processes in ecological field studies are often
quite complex. For example, the Hubbard Brook data set
that we use was collected in a manner that did not meet
strictly the assumptions of our abundance-based sampling
model. The dataset comprises all individuals living within a
single ten hectare plot within the forest. Strictly speaking,
this violates the model assumption of the random selection
of individuals over the entire extent of the forest. As a
second example, each point in trait space, that characterizes
a species, is assumed to be a known constant by our
abundance-based and sample-based models. This is unlikely
to be true in most cases of interest. These types of violations
have the potential to affect inferences. Future work should
focus on solutions to these problems of model misspecifica-
tion. For example, how robust are our methods to violations
of model assumptions or can we develop more realistic
sampling models?

When using FAD and FD, it is important to remember
that the choice of distance measure, which quantifies the
proximity of species in functional trait space, and the
clustering algorithm, which prescribes how dendrograms are
constructed for the calculation of FD, can influence the
results of analyses (Podani and Schmera 2006). It is
currently unclear how sensitive ecological conclusions are
to these choices (Petchey and Gaston 2007). Understanding
these issues remains an important research issue.

The statistical ecology of functional diversity is only just
beginning to mature. This study provides functional
diversity researchers with new statistical tools that allow
the unbiased estimation and comparison of functional
diversity indices, at scales larger than fully surveyed plots,
when sampling effort may not be standardized across
communities. We also showed how the statistical literature
on species diversity can be used both as a model to
anticipate statistical issues surrounding functional diversity
(e.g. sample-size-induced bias) and as inspiration on how to
solve new statistical issues in functional diversity as they
arise (e.g. rarefaction).
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Appendix A. Properties of rarefaction estimators
(generalizing Smith and Grassle 1977)

Here we show that <IA)M> is an unbiased estimator for (D, >.
We begin with some definitions. Let the estimator, (D), be
a random variable that depends on the sampling model
indexed by a parameter, 0. Let the sample of v units be
denoted as v and diversity in a sample of 1 <V units be D,.
We define (D) = E(D u[V), where E(A[v) is the mathema-
tical expectation of any random variable, A, given that we
observed the data, v. If v arises from independent random
sampling, as in the main text, E(A|v) is the expectation of A
given that we randomly sub-sample from v without-
replacement.  We also  define (D )= E(D |0) where
E(A|0) is the mathematical expectation of A glven that we
sample from the model indexed by parameter 0. These
definitions of (D < u> and {(D,;» are more precise and more
general than the definitions given in the main text. They
also provide sufficient notation to prove that (D) is an
unbiased estimator for {(D,,> in a succinct manner.
By the definition of an unbiased estimator, we are
requlred to show that E((D 10) = (D). By substitution,
E((D,)|0) = E(E(D 10). Because 0 is constant (but
unknown) expectatlon that conditions on 0 is identical to
unconditional expectatlon Therefore, by the theorem of
total expectation, E({D,,)0) = E(D 4|0). Bug, by definition,
=ED |0) whlcﬁ proves the required equality,
E((*D )10)=(D,).
The prev1ous paragraph showed that for our general
rarefaction model, (D) is an unbiased estimator of (D ,>.
However, lack of bias is only one desirable property of an
estimator. Another desirable property is low sampling
variance. These two desirable properties inspire statisticians
to search for unbiased estimators that have the lowest
possible sampling variance anywhere on the parameter
space. Such an estimator, if it exists, is referred to as a
uniformly minimum-variance, unbiased (UMVU) estima-
tor. It follows directly from the Rao-Blackwell and
Lehmann-Scheffé theorems that (D) is UMVU for
(Dyy if v is a complete sufficient statistic. While this
might not be true in general, it is true for the two ecological
sampling models that we consider here because both are
multinomial models. A complete sufficient statistic for any
multinomial model is the vector of observed counts. For



our abundance-based model, this vector is v=[Ny, ...,
Né], the vector of species abundances, and for our sample-
based modelitis v =[M;, ..., M], the vector of species-list
abundances. Our estimators for FD rarefaction are calculated
by Monte Carlo. Therefore, the added Monte Carlo simula-
tion error will increase the variance of the estimators above the
UMVU case. However, we can make our Monte Carlo
estimators arbitrarily close to the UMVU estimators by
increasing the number of Monte Carlo iterations.

Appendix B. FAD rarefaction formulae

In the following subsection we derive the four different
types of FAD rarefaction, (FAD,),(FAD,),(FAD,),
(FAD, ). One way to look at differences amongst these
types of rarefaction is to recognize that they each arise from
a different sampling model. The sampling models are
categorized as abundance- or sample-based and as with- or
without-replacement. Abundance- and sample-based rare-
factions are indicated by an n and m respectively. Without-
replacement rarefactions have a ‘hat’ over the FAD symbol
and with-replacement rarefactions have no such ‘hat.” These
four models have crucially different biological and statistical
interpretations. The with-replacement models are indexed
by community-level parameters (the species and species-list
probabilities) whereas the without-replacement models are
indexed by sample-level parameters (the observed species
and species-list abundances). Mathematically, however,
these four types of rarefaction have very similar under-
pinnings and so we derive them all simultaneously. Let
{®,> be an FAD rarefaction for rarefied sample size, ;
that i, {D@,) can takeA values on the set,
{{FAD,), (FAD,), (FAD,), (FAD, )}.

We now provide a precise definition of rarefied FAD.
We begin by defining some sets. Let 6 ={1,. . .,S} be the set
that contains the indices for each of the S species in the
community. Suppose we take a sample (of individuals or
plots) of size, W, from a collection of samples. Let the
random variable G, be the subset of o containing
the indices of all species with non-zero abundance in the
random sample. We define (@) to be,

(®,)=E {Z I, (i, j)di]}

i>j
where dj; is a constant for all i and j on 6 and I (i,j) is a
Bernoulli random variable (the indicator function) that
equals 1 when both species i and j are in &, (and equals 0
otherwise). By the linearity of the expectation operator and
the fact that Icp(i, j) is a Bernoulli random variable,

(@,)=> Pri,jec,)d;
i>j

where Pr(i, jeo)) is the probability that species i and j are
both in the sample, 6. This probability can be expanded in
a manner that facilitates the search for an expression of
Pr(i, jecy) in terms of the parameters of one of the four
sampling models. Note that we can write Pr(i, jec,) =
Pr(AnB) where A and B are the events that i and j
respectively are on G, and N is the intersection symbol of
elementary set theory. We need some further notation from
elementary set theory: U is the union and A is the

complement of A. Using de Morgan’s laws (i.e. that
(AUB)*=A“NB° and (ANB)*=A“UB"), the inclusion-
exclusion principle (i.e. that Pr(AUB) =Pr(A)+Pr(B) —
Pr(AnB)) and the fact that Pr(A) =1 —Pr(A°), it is
straightforward to show that,

Pr(AnB) = 1 — Pr(A°) — Pr(B°) + Pr(A°n B°).
Converting back into our previous notation, we have,
Pr(i,j e Gu) =1-— Pr(iécu) — Pr(jéGu)
+Pii¢o,,j¢o,),

where Pr(i¢c,,, j¢G,) is the probability that neither i nor j are
in the sample, ,,. We can now write a general expression for

{Dys
<cDu> = (I) - Z dij

i>j
X [Pr(i¢6p) + Pr(j¢6p) - Pr(i¢6wj67§6u)]7

where (@, > -® as [t =00 or when W reaches its maximum
value. To derive the specific expressions for each type of FAD
rarefaction (Table 1), we simply have to substitute the
expressions for Pr(i¢c,) and Pr(i¢c,, j¢c,) under each
sampling model and for the limiting value, @, of <®H>'

Appendix C. Bootstrap procedures

We now describe the bootstrap procedures that we used to
approximate confidence intervals for rarefied functional
diversity estimates in our Hubbard Brook bird community
example. The procedure is similar for each diversity index
under each sampling model and so we describe it for the
general diversity index, D, and general sampling model.
Bootstrapping was conducted by re-sampling v units with
replacement from the v units that were sampled from the
community and calculating the rarefied sample diversity,
(D)oo Of the bootstrap sample. This procedure was
conducted B times and the standard deviation, o, of the B
rarefied sample diversities was calculated. The 95% con-
fidence interval of the rarefied sample diversity, (D,,), was
calculated as (D,;)+/ — 1.960p. Note that this bootstrap
standard deviation, Gp, is not equivalent to taking the
standard deviation of the iterations used in a Monte Carlo
estimate of the rarefied sample diversity (Table 3). The
former procedure yields an estimate of the standard error of
the (D,,) while the latter does not. See Colwell et al. (2004)
for a discussion of these issues in the context of species
richness rarefaction and closed-form variance estimators.
For this bootstrap confidence intervalAto be valid, the
distribution of the bootstrap samples, (D,);,,,; must be
approximately normal. This is true when the rarefied
sample size, [, is small enough compared to the sample
size, v. In our experience, u <(2/3)v is sufficiently small.
However, the skew of the bootstrap distribution should be
checked directly. Researchers can use the 2.5% and 97.5%
values obtained from the bootstrap distribution to construct
approximate confidence intervals if preferred. However,
regardless of how the bootstrap confidence intervals are
constructed, the rarefied sample size, |1, should be chosen so
that the bootstrap distribution is approximately symmetric;
this is an important point. Recall that the bootstrap uses the
observed distribution of data as an estimate of the true
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population-level distribution. By sampling with replace-
ment from the observed distribution, and calculating
statistics of interest (such as diversity indices), we approx-
imate the true sampling distribution of these statistics. This
approximate sampling distribution can be used to compute
approximate measures of error of these statistics such as
standard errors and confidence intervals. These approxima-
tions get better as the observed distribution becomes more
similar to the true population-level distribution of the data.
In our situation, the diversity of a bootstrap sample can
never exceed that of the diversity,D, in the original sample
Therefore, when the rarefied sample size, {1, equals the size,
v, of the original sample, the upper bound of the bootstrap
distribution will be equal to the statistic, (D,), being
bootstrapped thOus resulting in a skewed distribution (recall
that (D) = D when p=v). This skew implies that the
bootstrap approximation is failing because we would expect
to obtain sample diversities higher than the diversity,D, of
our actual sample, upon repeated sampling from the
population. The approximation improves, and the skew
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disappears, as [ becomes smaller because the expected
diversity, {D,,», in a sample of size W is not likely to be
higher than D if p is small enough; in this case, it is
reasonable to take D as an upper-bound on the bootstrap
distribution of (D,». Therefore, the bootstrapping of
rarefied diversities should only be used when the rarefied
sample size, 1, is sufficiently smaller than v.

We now describe a simple bootstrap method for
approximating the confidence interval of the slope of a
least-squares regression of a rarefied diversity index on a
covariate of interest. Again, consider the generic diversity
index, D, and sampling model. Draw B bootstrap re-
samples, (D whoor» TOr €ach community. Calculate the least-
squares estimate of the slope, b ., of the linear regression
equation for each of the B re- samples Let the standard
deviation of the B re-sampled slopes be op. Then the

95% confidence interval of the estimated slope, b, is b
+/— 1.960g or can be assessed directly from the 2.5%
and 97.5% values obtained from the bootstrap if
preferred.



