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Biologists commonly use cluster-analysis techniques to identify species assem-
blages and biogeographic patterns (Peters 1971; Harvey 1978, 1981; P. Legendre
and Legendre 1984). In contrast, ordination techniques such as principal-
coordinates analysis (PCoA; Gower 1966) and nonmetric multidimensional scaling
(NMDS; Kruskal 1964a,b) have had limited use (Brown 1969; Stephenson and
Williams 1971; Gauch 1982), even though ordination-based methods have shown
promise (Hughes 1973; Fasham 1977; Gauch et al. 1977; Clymo 1980; Del Moral
1980; Kenkel and Booth 1987).

The widespread use of clustering procedures has revealed a number of prob-
lems with cluster analysis (see, e.g., Williams et al. 1971; Everitt 1979). Perhaps
foremost among these problems is that the objective nature of cluster analysis is
compromised by the subjective choices of clustering method and measures of
similarity, since both the method and the measure affect the analytical outcome
(Orléci 1978; L. Legendre and Legendre 1983; Pielou 1984). Additionally, cluster-
analysis techniques produce clusters even when they do not exist (Orloci 1967;
Jain et al. 1986); tied values in the similarity matrix result in a number of different den-
drograms (Hart 1983); and some methods produce clusters of nonconformists or rare
species (Williams et al. 1971; Noy-Meir 1973b; Clifford and Stephenson 1975).

Alternatively, PCoA ordinates individuals by employing an eigenanalysis of a
matrix of distances between individuals (for details, see L. Legendre and
Legendre 1983; Pielou 1984). Principal-coordinates analysis was originally pro-
posed for use with Euclidean measures (Gower 1966), but Cailliez and Pagés
(1976) and Sibson (1979) have suggested that this restriction may be relaxed since
non-Euclidean measures produce acceptable results. Nonmetric multidimensional
scaling also ordinates individuals according to an initial matrix of similarities or
distances, but the linear constraints of PCoA are relaxed such that monotonic
rather than strict linear arrangements of the points are reproduced (for details, see
L. Legendre and Legendre 1983; Kenkel and Orléci 1986). Consequently, the
more robust NMDS permits the use of both metric and nonmetric similarity or
distance measures (for a discussion of Euclidean, metric, and nonmetric mea-
sures, see Gower and Legendre 1986).
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A precursor to clustering and ordination is the construction of an intermediate
matrix measuring similarity (or distance) between samples or between species
(i.e., a Q or R mode of analysis, respectively). This step is usually implicit in the
more common ordination techniques like principal-components analysis and cor-
respondence analysis. However, in cluster analysis, PCoA, and NMDS there are
many similarity coefficients and, hence, many resemblance matrices to choose
from (see Hubalek 1982). In biogeographic and community studies, this choice is
often limited to qualitative coefficients because estimates of relative abundance
are highly variable. and quantitative sampling is thus prohibitively expensive
(Lamont and Grant 1979). In studies employing quantitative data, methodological
comparisons are common (Hughes 1973; Austin 1976; Fasham 1977; Kenkel and
Orl6ci 1986), but for binary (presence/absence) data, the choice of qualitative
coefficients and the resulting analyses are frequently debated (Farris 1979;
Janowitz 1979, 1980; see also Hubalek 1982; Kenkel and Booth 1987). Occasion-
ally, dendrograms based on different coefficients are presented for the same data,
depending on whether samples or species are clustered (Sepkowski and Rex
1974).

Similarity coefficients are often classified into two categories (see, e.g., Sneath
and Sokal 1973; Clifford and Stephenson 1975). One group is composed of mea-
sures of co-occurrence that range from 0 to 1.0. These coefficients can be recog-
nized by their numerator, which usually consists of a or a + d (see below and
table 2). The second group consists of coefficients of association, which generally
range from —1.0 to 1.0. Numerators in coefficients of association generally
contain ad — bc, where a, b, ¢, and d are derived from the following two-by-two
contingency table (+ represents species presence, — represents absence, and
a + b + ¢ + d = N, the total number of samples):

Species Y
+ p
+ a b
Species X .
- c d

Studies comparing similarity coefficients are common (e.g., Cheetham and
Hazel 1969; Baroni-Urbani and Buser 1976; Simberloff and Connor 1979; Hubélek
1982; Gower and Legendre 1986), but each study has generated different conclu-
sions, prompting a general acceptance that the ‘‘behavior’” of similarity co-
efficients is data-specific (i.e., dependent on the relative frequency of ones and
zeros; see Janowitz 1980; Hubdlek 1982). As a resuit, the choice of a similarity
coefficient is largely subjective and often based on tradition or on a posteriori
criteria such as the ‘‘interpretability’’ of the results. As Gordon suggested, ‘‘hu-
man ingenuity is quite capable of providing a post hoc justification of dubious
classifications’’ (1987, p. 127).

Since the results of cluster analysis and ordination may depend on the choice of
similarity coefficient (see Orléci 1978; L. Legendre and Legendre 1983; Pielou
1984), we need to understand the behavior of different types of coefficients. The
implications of choosing between clustering methods are well established (Clifford
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and Stephenson 1975; Orléci 1978; Pielou 1984), but Hubdlek (1982), Gower and
Legendre (1986), and Kenkel and Orléci (1986) emphasized that a thorough
understanding of the consequences of choosing a particular similarity coefficient
is lacking and that comparative studies are necessary.

To examine the implications of choosing different similarity coefficients, we
compare the results from cluster analysis, PCoA, and NMDS using eight common
similarity coefficients. We show that many of the coefficients produce comparable
results irrespective of the analytical technique but that the choice of similarity
coefficient greatly affects the analysis. We believe that conflicting results from co-
occurrence and association coefficients reflect inherent mathematical transforma-
tions that have long been recognized in multivariate analyses of continuous
quantitative data.

METHODS

Data Collection

We intensively surveyed 52 lakes in the watersheds of the Black and Hollow
rivers of south-central Ontario to determine fish species composition (Jackson
1988). Species were recorded as present or absent only. Lakes were sampled with
experimental gill nets, fine- and coarse-mesh trap nets, plastic traps, baited
minnow traps, and seine nets (see Harvey 1978, 1981; Somers and Harvey 1984;
Jackson 1988). A total of 31 species was caught. Only species occurring in more
than one lake were used in the analysis (N = 25; table 1).

Statistical Analysis

The 52-by-25 lake-by-species data matrix was used to compare species inter-
relationships revealed by R-mode cluster analysis and two methods of ordina-
tion. Eight different similarity coefficients were used: Jaccard, Sgrensen-Dice
(originally described in Czekanowski 1913 but more frequently called the Sgr-
ensen or Dice coefficient), Russell and Rao, Simple Matching, Rogers-Tani-
moto, Ochiai, Yule, and Phi (see table 2). The first six coefficients are co-occur-
rence measures, whereas the last two are measures of association. Similarities
derived from these coefficients were also transformed to distance measures by
taking the square root of the complement (i.e., (1 — $)"?). All the resulting dis-
tance measures have Euclidean properties with the exception of Yule’s coeffi-
cient, which is nonmetric (table 2; see Gower and Legendre 1986). Euclidean
coefficients are metric, although not all metric coefficients have Euclidean
properties.

All multivariate analyses were completed using NT-SYS numerical-taxonomy
package (Rohlf et al. 1982). Dendrograms for all eight similarity coefficients were
constructed using the unweighted paired-group method of averaging (UPGMA;
Sneath and Sokal 1973). Dendrograms were subjectively compared using visual
inspection and then contrasted with cophenetic correlation coefficients (Sneath
and Sokal 1973) and with consensus trees using the CI(C) index (for details, see
Rohlf 1982). Both the cophenetic correlation and the consensus index provide
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TABLE 1

CoMMON NAMES, SCIENTIFIC NAMES, AND THE FREQUENCY OF

OCCURRENCE OF FisH SPECIES

Number
of Lakes Family Species Common Name
47 Centrarchidae Lepomis gibbosus pumpkinseed
43 Percidae - Perca flavescens yellow perch
41 Catostomidae Catostomus commersoni white sucker
39 Cyprinidae Semotilus atromaculatus creek chub
35 Ictaluridae Ictalurus nebulosus brown bullhead
23 Cyprinidae Phoxinus eos northern redbelly dace
23 Cyprinidae Notemigonus crysoleucas golden shiner
19 Salmonidae Salvelinus fontinalis brook trout
16 Cyprinidae Notropis cornutus common shiner
16 Centrarchidae Micropterus dolomieui smallmouth bass
15 Cyprinidae Pimephales notatus bluntnose minnow
14 Cyprinidae Semotilus margarita pearl dace
12 Cyprinidae Phoxinus neogaeus finescale dace
11 Centrarchidae Micropterus salmoides largemouth bass
11 Cyprinidae Notropis heterolepis blacknose shiner
9 Gadidae Lota lota burbot
9 Cyprinidae Pimephales promelas fathead minnow
8 Salmonidae Salvelinus namaycush lake trout
6 Gasterosteidae Culaea inconstans brook stickleback
4 Percidae Etheostoma exile Iowa darter
4 Cyprinidae Rhinichthys atratulus blacknose dace
3 Cyprinidae Couesius plumbeus lake chub
3 Centrarchidae Ambloplites rupestris rock bass
3 Salmonidae Coregonus artedii cisco
2 Cyprinidae Semotilus corporalis fallfish

relative estimates of dendrogram similarity. The cophenetic correlation incorpo-
rates information associated with cluster membership and relative hierarchical
position of each subcluster. In contrast, the consensus index estimates relative
dendrogram congruence solely on the basis of cluster membership. That is,
consensus indexes measure concordance between dendrograms as a function of
the number of subsets (i.e., species found jointly in clusters in both dendrograms)
relative to a measure of the total number of possible subsets (Rohlf 1982).

Both similarity and distance coefficients were used in PCoA (for details, see
Gower 1966). However, only distance measures were compared in NMDS (see
Kruskal 1964a,b), since distances are monotonic transformations of the simi-
larities and provide identical results. A random initial configuration was chosen
for the NMDS to minimize the possibility of local minima imposed by Euclidean
approximations (see Kenkel and Orl6ci 1986). Duplicate analyses using random
configurations were also completed to further reduce the probability of encounter-
ing local minima in the NMDS. If the replicated solutions differed substantially,
several additional runs were completed to resolve the differences. Only three-
dimensional solutions were considered in this study, since these are easily com-
pared visually (Shepard 1974).

Scores on the first three axes of all ordinations were compared with Spearman
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rank correlations. Because rank-order changes, rather than absolute changes,
were considered most important in the resulting ordinations, only rank correla-
tions are discussed (this is consistent with the NMDS methodology). Levels of
statistical significance are not given because the analyses are derived from a single
initial data matrix and therefore lack independence.

RESULTS AND DISCUSSION

Cluster Analysis

The dendrograms provide little evidence of strong group structure (fig. 1).
Redundancy among the coefficients is readily apparent from the nearly identical
results obtained using the Jaccard and Sgrensen-Dice coefficients or using the
Simple Matching and Rogers-Tanimoto coefficients (table 3).

The coefficients of Jaccard, Sgrensen-Dice, and Russell and Rao all initiate
cluster formation among species having the greatest frequency of occurrence (i.e.,
the most frequently occurring species). A ‘‘chaining’’ of species also occurs, with
less frequent species being incorporated into existing clusters. Simple Matching
and Rogers-Tanimoto coefficients initiate clusters from both rare and ubiquitous
species because of the inclusion of joint absences in the numerators of these
coefficients.

The dendrogram based on Ochiai’s coefficient also appears to summarize fre-
quency of occurrence (fig. 1). This pattern is weaker than with the other
coefficients of co-occurrence, and the chaining effect is also less apparent. The
dendrogram based on Ochiai’s coefficient resembles the Jaccard and Sgrensen-
Dice dendrograms, indicating strong similarities in cluster structure (table 3).
There is little resemblance in the subcluster structure among the remaining den-
drograms (i.e., using the consensus index), but including hierarchical informa-
tion in the cophenetic correlation indicates that the Simple Matching and Rogers-
Tanimoto dendrograms are unique.

Yule’s coefficient produces tight clusters with many species pairs having
similarities of 1.00 (fig. 1). This occurs when pairs of species display no mis-
matches (i.e., b or ¢ = 0; see formula in table 2) and the coefficient assumes a
value of 1.00 (for details, see Michael 1920). This problem distorts some species
relationships in the resulting dendrogram. In contrast, the Phi coefficient is the
only measure not markedly influenced by frequency of occurrence and not suffer-
ing the excess number of 1.00 values found in Yule’s coefficient (fig. 1). However,
the dendrogram based on the Phi coefficient undoubtedly contains some distor-
tions, since zero totals in a, b, c, or d bias the coefficient (Michael 1920; Baroni-
Urbani and Buser 1976).

The similar patterns in some dendrograms are not surprising because general-
izations about the properties of several coefficients are possible (see Hubalek
1982; Gower and Legendre 1986). The Jaccard and Sgrensen-Dice coefficients are
equivalent except that double weighting is given to co-occurrences in the Sgren-
sen-Dice coefficient (see table 2). The Simple Matching and Rogers-Tanimoto
coefficients include joint absences (i.e., d) but differ in that Rogers-Tanimoto
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Fi. 1.—Dendrograms constructed using the unweighted paired-group method of averaging
(UPGMA) and based on eight similarity coefficients. The number of lakes in which each

species was found follows the species name.
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gives double weight to mismatches (i.e., b and ¢). This inclusion of joint absences
provides equal importance to species presences and absences, and rare species
are therefore as important as ubiquitous species in cluster formation (see, e.g., fig.
1). Conversely, coefficients including only co-occurrences (i.e., a) in the
numerator initiate clusters with ubiquitous species. This is readily seen in the
dendrogram based on Russell and Rao’s coefficient, as well as in the Jaccard,
Sgrensen-Dice, and Ochiai dendrograms.

The Phi and Yule coefficients are based on measures of statistical association
(i.e., x> measures). Maximal values for these types of coefficients occur when two
species are found in approximately 50% of the samples (Cole 1949; Hurlbert 1969;
Fienberg and Gilbert 1970). As a result, neither ubiquitous nor rare species are
favored in the Phi-based dendrogram (fig. 1). But since the analysis based on
Yule’s coefficient is distorted whenever the occurrence of one species is nested
within a second species (i.e., b or ¢ = 0; see Michael 1920), the dendrogram using
Yule’s coefficient tends to form pairs based on a common or ubiquitous species
and a rare species. Consequently, the associations depicted by the dendrogram
using Yule’s coefficient contrast with all other patterns (table 3).

Principal-Coordinates Analysis

The amount of variation explained in the first three principal-coordinates-
analysis (PCoA) axes ranged from 16.4% for Russell and Rao’s to 58.7% for the
Simple Matching coefficient. This percentage was determined using the method of
Cailliez and Pages (1976), which corrects for the occurrence of negative eigen-
values. Rank correlations of the scores obtained from analyses of both similarity
and distance measures of each coefficient showed that the PCoA solutions were
identical in almost all cases, even though the similarity coefficients were not
metric. Since the distance matrix D was calculated as (1 — )2, the ordination
distances based on the PCoA of the similarity matrix S should equal (2)!? times the
ordination distances derived from the PCoA of the matrix D (see Gower 1971).
Because PCoA axes derived from similarity and distance matrices show marked
correlations, only the results for the distance matrices are discussed below.

High rank correlations between scores (i.e., the position of each species) on the
first axis of the PCoA and the number of lakes in which a given species occurred
were obtained for all coefficients except Ochiai, Phi, and Yule (table 4). Conse-
quently, for five of the six co-occurrence coefficients, the first axis in the PCoA
appears to reflect a general “‘size’’ factor associated with the frequency of occur-
rence. Monte Carlo simulations have previously identified this dependence in
Jaccard’s coefficient (Rice and Belland 1982), but this reoccurring pattern in
PCoA is similar to the general size effect often found in principal-components
analysis (Jolicoeur and Mosimann 1960; Somers 1986). The magnitude of the size
influence varies among coefficients (table 4, PCoA-axis 1), but the first PCoA axes
derived from analyses using association coefficients are relatively free of the size
influence. This effect is surprising since patterns of species association derived
from measures of co-occurrence (except Ochiai) may actually reflect the fre-
quency of occurrence and not ecological interactions. (Note aiso that by compar-
ing the dendrograms [fig. 1] and the first axis of the PCoA [table 4; fig. 2], it is



TABLE 4

SPEARMAN RANK CORRELATIONS BETWEEN ‘‘SIZE’> AND ORDINATION SCORES FROM PRINCIPAL-
CoORDINATES ANALYSIS (PCOA) AND NONMETRIC MULTIDIMENSIONAL SCALING (NMDS)

PCoA-Axis NUMBER

NMDS-Axis NUMBER

COEFFICIENT* 1 2 3 1 2 3
Jaccard 0.942 0.281 0.117 0.575 0.353 0.136
Sgrensen-Dice 0.793 0.536 0.153 0.575 0.353 0.136
Russell and Rao 0.913 0.088 0.132 0.250 0.192 0.069
Simple Matching 0.996 0.003 0.044 0.903 0.727 0.826
Rogers-Tanimoto 0.996 0.030 0.022 0.903 0.727 0.826
Ochiai 0.329 0.060 0.877 0.243 0.180 0.162
Phi 0.006 0.038 0.640 0.474 0.167 0.014
Yule 0.076 0.126 0.069 0.043 0.077 0.178

* Distance forms of coefficients only; axes based on similarities provide nearly identical results.
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Fic. 2.—Scattergrams of species’ frequency of occurrence versus axis 1 from principal-
coordinates analysis for eight coefficients. Corresponding Spearman rank correlations are

found in table 4.
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evident that the species’ rank order in the dendrograms and PCoA-axis 1 is
similar; i.e., PCoA-axis 1 approximates the dendrogram resuit.)

Scatter plots of the first PCoA axes with the species’ frequency of occurrence
illustrate how the various coefficients summarize size variation (table 4; fig. 2).
Both the Jaccard and Sgrensen-Dice measures produce a first axis exhibiting an
asymptotic relationship with frequency of occurrence. The first PCoA axis using
Russell and Rao’s coefficient is also asymptotic with size. However, the first axes
produced from Simple Matching and Rogers-Tanimoto coefficients are linear
functions of the frequency of occurrence with correlations approaching one. The
inclusion of joint absences (d) in both the numerator and denominator of these co-
occurrence coefficients appears to produce a first axis that is linear rather than
asymptotic with frequency of occurrence. In contrast, first axes based on Ochiali,
Phi, and Yule coefficients are not correlated with frequency of occurrence, but the
size effect emerges in the third axis associated with the Ochiai and Phi coeffi-
cients.

Nonmetric Multidimensional Scaling

The nonmetric ordination is similarly affected by frequency of occurrence (table
4). The first axis in each ordination based on co-occurrence coefficients was
correlated with frequency of occurrence (with the exception of the Russell and
Rao and the Ochiai coefficients). Again, results from the Phi and Yule coefficients
were less influenced by size effects. The arrangement of species on the nonmetric-
multidimensional-scaling (NMDS) axes was similar to that found in the PCoA, but
the sequence of the axes often differed (table 5). The first PCoA axis was cor-
related with either the first NMDS axis or with one or more subsequent axes.
Since NMDS does not maximize the variance explained by each successive axis,
the order of the axes based on random initial configurations may not correspond to
that in PCoA. Although the size effect is often weaker in NMDS than in PCoA, the
NMDS solutions retain this influence (table 4).

Comparisons among Coefficients

Correlations among axes from the various coefficients indicated a high degree of
redundancy among analyses using different coefficients (table 6). Correlations
between axes of the Jaccard and Sgrensen-Dice ordinations approached one for
both PCoA and NMDS solutions. Results from analyses using Simple Matching
and Rogers-Tanimoto coefficients were also nearly identical. The first PCoA axis
of each of these four coefficients and the Russell and Rao coefficient contained
nearly identical information, since the relative order of the species remained the
same (i.e., similar size effects). Results of ordinations using the Jaccard and
Sgrensen-Dice coefficients were virtually identical in all three dimensions, as
were the results from the Simple Matching and Rogers-Tanimoto coefficients.

The first PCoA axis obtained from each coefficient of association was not
correlated with the first PCoA axis derived from any co-occurrence measure
except the Ochiai coefficient. Surprisingly, the first axis from both association
coefficients was correlated with the second axis of the measures of co-occurrence
(table 6). The second association-based PCoA axes were correlated with the third
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TABLE 5

SPEARMAN RANK CORRELATIONS BETWEEN ORDINATION SCORES FROM PRINCIPAL-COORDINATES ANALYSIS
(PCoA) AND NONMETRIC MULTIDIMENSIONAL SCALING (NMDS)

NMDS-Axis NUMBER

PCoA-Axis
COEFFICIENT NUMBER 1 2 3
Jaccard 1 0.518 0.594 0.155
2 0.410 0.724 0.262
3 0.383 0.028 0.862
Sg¢rensen-Dice 1 0.412 0.816 0.083
2 0.571 0.486 0.411
3 0.345 0.163 0.871
Russell and Rao 1 0.417 0.383 0.182
2 0.254 0.850 0.351
3 0.412 0.197 0.539
Simple Matching 1 0.910 0.712 0.849
2 0.364 0.473 0.397
3 0.046 0.307 0.197
Rogers-Tanimoto 1 0.895 0.726 0.854
2 0.402 0.430 0.350
3 0.022 0.314 0.220
Ochiai 1 0.079 0.956 0.035
2 0.483 0.034 0.734
3 0.470 0.134 0.114
Phi 1 0.903 0.509 0.007
2 0.244 0.198 0.805
3 0.677 0.316 0.128
Yule 1 0.298 0.962 0.001
2 0.814 0.033 0.728
3 0.072 0.025 0.582

axes of the other coefficients, and the size influence reappeared in the third Phi
axis (table 4). Although the information in the first axes from coefficients of
association is independent of the size effect, the first axes were correlated with the
second axes from analyses using co-occurrence coefficients. This suggests that
the first axes from ordinations using co-occurrence coefficients are measures of
size, whereas the first axes from ordinations of association coefficients (including
Ochiai’s coefficient) summarize information about the ‘‘shape’ of the species
assemblages (i.e., expressing interspecific associations independent of the fre-
quency of occurrence). This shape information is expressed on second and subse-
quent PCoA axes of the co-occurrence coefficients. Such size and shape patterns
are less evident in the NMDS ordinations (e.g., see table 4), probably because of
the monotonic constraints and scaling features of the NMDS procedure.

Implication of Size Dependence

The size dependence of the first PCoA axis derived from co-occurrence
coefficients has important implications in both cluster analysis and ordination.
Dendrograms produced by the unweighted paired-group method of averaging
show a predominant size effect as well as redundancy among the coefficients (fig.
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1; table 3). Jaccard and S¢grensen-Dice coefficients produce nearly identical den-
drograms. This pattern is also evident from dendrograms derived from Simple
Matching and Rogers-Tanimoto coefficients. These two pairs of coefficients differ
in the relative weighting of a, b, ¢, or d values, which appears to have limited
impact on subsequent analyses.

The dependence of cluster analysis on size was also evident from the chaining
of species in the dendrograms (fig. 1). The nearly identical dendrograms from the
Jaccard and Serensen-Dice coefficients produce species clusters mirroring the
size gradient (see also table 3). This effect was quite apparent in the Russell and
Rao dendrogram, where rare species chained into the existing core group. Simple
Matching and Rogers-Tanimoto coefficients clustered species from ‘‘seed”
groups formed around rare or ubiquitous species. This was due to the inclusion of
joint absences in the coefficients’ numerator; these dendrograms are thus unique
(table 3). The dendrogram based on Ochiai’s coefficient also appears to sum-
marize a size effect (i.€., the cophenetic correlation with the Jaccard dendrogram
is 0.971 and the consensus index is 0.826; table 3), whereas the Phi and Yule’s
coefficients produce different dendrograms.

This size dependence in cluster analysis is also evident in published studies, but
the size artifact has not been previously identified (see, e.g., Harvey 1978, 1981;
Somers and Harvey 1984; Nemec and Brinkhurst 1987). Consequently, many
previous interpretations of ‘‘species associations’’ may actually describe a meth-
odological artifact (Strauss 1982). We believe that size dependence per se simply
reflects whether or not the similarity coefficient implicitly incorporates a centering
transformation. Noy-Meir (1971) identified a similar phenomenon in principal-
components analysis, where the analysis of non-centered data (i.e., nodal analy-
sis) produced a first principal component ordering observations along an axis
joining the origin and the centroid of the data (see also Noy-Meir 1973a). This
method is also recognized as non-centered principal-components analysis (Hinch
and Somers 1987), and similar effects emerge in PCoA and NMDS when non-
centered similarity coefficients are used (for discussions of centering, see Dag-
nelie 1965; Orléci 1967).

Ochiai’s coefficient incorporates a centering translation described as the chord
distance by Orléci (1967). This differs from a centered coefficient (i.e., an associa-
tion coefficient) in ranging from 0 to 1.0. Additionally, although the first PCoA
axis was not correlated with frequency of occurrence, the third axis was (table 4).
Consequently, Ochiai’s coefficient may simply shift the size effect from the first
axis to some subsequent axis. Interestingly, no size dependence is apparent in the
NMDS solution.

The two association coefficients (i.e., Phi and Yule), which center data with the
ad — bc numerator, show no size dependence in the first two PCoA and NMDS
axes. However, the third axis in the PCoA of the Phi coefficient is correlated with
frequency of occurrence (table 4), just like the third axis associated with Ochiai’s
coefficient (see also table 6). These two association coefficients and Ochiai’s
coefficient incorporate centering transformations that reduce the importance of
the size effects (i.e., shift size to subsequent axes). Apparently, the greatest effect
of choosing a non-centered similarity coefficient is manifested by cluster-analysis
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procedures in which the dendrogram orders individuals along a single size axis.
Size effects in ordinations are less troublesome, but failure to recognize size axes
may jeopardize interpretations.

Obviously, generalized conclusions regarding the implications of selecting simi-
larity coefficients on the basis of the results of this study alone would be prema-
ture. But it appears that the major difference between co-occurrence and associa-
tion coefficients is the reduced emphasis of size dependence whenever the
coefficient incorporates a centering transformation. In this study, multivariate
summaries of similarity matrices faithfully reproduce a gradient correlated with
the frequency of occurrence when non-centered similarities are used. This gra-
dient appears in cluster analysis, PCoA, and NMDS. We fear that this size effect
has been previously unnoticed; yet size may constitute a major portion of current
interpretations.

SUMMARY

Data on the presence or absence of 25 fish species in a survey of 52 lakes from
the watersheds of the Black and Hollow rivers of south-central Ontario were
analyzed with eight similarity coefficients. Comparisons were made of Jaccard,
Ochiai, Phi, Rogers-Tanimoto, Russell and Rao, Simple Matching, Sgrensen-
Dice, and Yule similarity coefficients using results from R-mode cluster analysis,
principal-coordinates analysis (PCoA), and nonmetric multidimensional scaling.
Coefficients were grouped into those representing measures of co-occurrence and
those measuring association. Coefficients of co-occurrence (i.e., Jaccard, Rogers-
Tanimoto, Russell and Rao, Simple Matching, and Sgrensen-Dice) incorporate
information associated with the frequency of occurrence of the fish species ana-
lyzed. Dendrograms faithfully revealed this size effect. Similarly, first axes of
PCoA were linear or curvilinear functions of species’ frequency of occurrence.
Measures of association (i.e., Phi and Yule) and Ochiai’s coefficient were less
affected by the frequency of occurrence. The first axes of PCoA, based on
centered coefficients (i.e., Phi, Yule, and Ochiai), were highly correlated with the
second axes from ordinations using co-occurrence coefficients. The second axes
from analyses of centered coefficients were correlated with the third axes based
on non-centered measures.

We propose that co-occurrence coefficients reflect a general size effect similar
to that commonly found in principal-components analysis. Measures of associa-
tion and Ochiai’s coefficient incorporate implicit centering transformations that
reduce the size influence associated with the frequency of occurrence. Cluster
analyses using co-occurrence coefficients are most susceptible to this size effect.
We believe that the interpretations of many dendrograms fail to recognize size
effects that arise from employing non-centered similarity coefficients (e.g.,
Strauss 1982; Nemec and Brinkhurst 1987). Additionally, arguments contrasting
phenetic and phylogenetic methods may unknowingly debate the utility of cen-
tered versus non-centered coefficients, since the size effect undoubtedly contrib-
utes to the apparent strength of phylogenetic approaches.
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