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SUMMARY

Ecological studies frequently involve large numbers of variables and observations, and these are often subject to
various errors. If some data are not representative of the study population, they tend to bias the interpretation and
conclusion of an ecological study. Because of the multivariate nature of ecological data, it is very difficult to
identify atypical observations using approaches such as univariate or bivariate plots. This difficulty calls for the
application of robust statistical methods in identifying atypical observations. Our study provides a comparison of a
standard method, based on the Mahalanobis distance, used in multivariate approaches to a robust method based on
the minimum volume ellipsoid as a means of determining whether data sets contain outliers or not. We evaluate
both methods using simulations varying conditions of the data, and show that the minimum volume ellipsoid
approach is superior in detecting outliers where present. We show that, as the sample size parameter, h, used in the
robust approach increases in value, there is a decrease in the accuracy and precision of the associated estimate of
the number of outliers present, in particular as the number of outliers increases. Conversely, where no outliers are
present, large values for the parameter provide the most accurate results. In addition to the simulation results, we
demonstrate the use of the robust principal component analysis with a data set of lake-water chemistry variables to
illustrate the additional insight available. We suggest that ecologists consider that their data may contain
atypical points. Following checks associated with normality, bivariate linearity and other traditional aspects, we
advocate that ecologists examine their data sets using robust multivariate methods. Points identified as being
atypical should be carefully evaluated based on background information to determine their suitability for
inclusion in further multivariate analyses and whether additional factors explain their unusual characteristics.
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1. INTRODUCTION

Species and their composite, ecological communities, are the result of a combination of biotic and

abiotic conditions. The interaction of various environmental factors has long been recognized to

influence the species combinations. As a result of this complexity, ecologists often use multivariate

techniques to determine the relationship between the various taxa, the various environmental
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conditions and the association between these two sets of variables. This necessitated that ecologists be

at the forefront in the development and application of many multivariate applications to summarize the

complexities of the patterns encountered. When examining environmental data (but typically not

species abundance data that show non-linear relationships), it is frequently assumed that the data

follow well-behaved statistical distributions and relationships. The data are often assumed to have (or

are transformed to approximate) normal distributions and linear relationships between variables. Such

assumptions may not be critical where the goal is pattern exploration, but various characteristics of the

data may complicate or confound both exploration and hypothesis testing. A principal factor

contributing to such problems is the influence of atypical points or outliers. Although it is likely

that outliers may exist in many ecological studies, ecologists have directed little attention at the

detection of, and dealing with, multivariate outliers relative to the efforts from many other fields (e.g.

statistics: Rousseeuw, 1985a,b; geology: Barcelo et al., 1996; chemistry: Egan and Morgan, 1998).

There is a rich literature related to detecting univariate and bivariate outliers or influential points,

and many ecologists are aware of these studies and methods as they are covered in standard and

specialized texts (e.g. Rousseeuw and Leroy, 1987; Barnett and Lewis, 1993). Many of these

approaches rely on graphical techniques (univariate or bivariate plots) for a visual assessment of

unusual points or some form of quantitative description. In the simplest case of univariate data, people

have employed methods such as identifying points exceeding 3 or more standard deviations from the

mean and then consider those points to be ‘outliers’. However, moments describing the data, e.g. the

mean and variance, are influenced by outliers. This influence may hide or mask true outliers, but also

incorrectly lead to the identification of points as being outliers that are representative of the sampled

population. Approaches based on medians and quartiles have provided one solution but are not without

problems (see Mosteller and Tukey, 1977; or Chen and Jackson, 1995, for discussions). Once one

begins to work with bivariate relationships, the complexity and variety of approaches increases greatly.

Atypical points may lead to inflated variances as with univariate data, and also alter the covariance or

correlation structure (see Figure 1 for an example). With bivariate data, atypical points may follow the

same general trend, but simply be more extreme in their location. This simply gives them greater

Figure 1. Bivariate scatterplot of simulated data illustrating the effect outliers have on the covariance structure and the

associated confidence limits. The outliers (open circles) were identified using a least-median of squares approach. The solid

ellipse represents the 99% confidence limits where the outliers are retained and the dashed line is the 99% confidence ellipse

where they are removed
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influence in determining the direction of the slope and statistical significance in ordinary least-squares

(OLS) regression. However, atypical points falling off the general trend may greatly influence the

estimates of the slope, intercept and statistical significance. Various measures of influence associated

with bivariate data have been developed (e.g. simple residual plots, Cook’s D). Once identified as

being atypical, a decision can be made about how to weight these data points (i.e. fully weighted,

down-weighted or deleted) and recalculate the model using the remainder of the data. Alternatively

one can employ different regression models assuming different error structures or weight the data

points in a manner different from the OLS. One of the methods shown to have the greatest promise is

the least median of squares (Rousseeuw, 1985a; Chen et al., 1994).

An important parameter in dealing with outliers is the breakdown point. This measures the ability

of an estimation method to identify the unbiased estimates for parameters with data having outliers. It

is defined as the smallest fraction of contamination (e.g. data points not belonging to the general

pattern of the population) that can cause the estimator to take on biased values far away from the true

estimates (Rousseeuw and Leroy, 1987; Barnett and Lewis, 1993). Clearly the maximum value that

can be achieved for a breakdown point is 50% as, when more than 50% of the data are contaminated

points (i.e. ‘outliers’), it is impossible to distinguish the ‘good’ from the ‘bad’ parts of the data.

Methods based on OLS estimators typically have a breakdown point near zero and are, therefore,

subject to giving poor model estimates with even a few outliers in the data. In contrast, methods based

on robust estimators have been shown to be effective, with large proportions of the data being atypical

points. The least median of squares has been shown to be effective with nearly 50% contamination (see

Chen et al., 1994, for details and comparisons of methods).

In making the transition to multivariate data, one can no longer view the full set of data directly.

Plotting of data is restricted to two- or three-dimensional plots of either the original variables or axes

resulting from summarization methods (e.g. principal component analysis, PCA). The multivariate

nature of the data and the covariation of variables may mask some outliers or suggest other points as

atypical (Becker and Gather, 1999; Caroni, 2000; Pell, 2000). Different covariance patterns for the

outliers may not be visible in simple univariate or bivariate plots of the original environmental

variables. Due to masking from biased estimates of covariance or correlation structure, outliers may not

be visible in plots from multivariate analyses. For these reasons, even diligent researchers carefully

checking their data prior to analysis may not recognize contaminated data. Alternatively they may

discard observations that they believe are ‘bad’ observations and have been erroneously classified as

such due to biased measures. Given the large numbers of observations and variables used in community

and environmental studies, it is likely that some ‘unusual’ data points may appear in the observations.

Therefore there is a need for more robust measures to identify these atypical points and allow

researchers to decide whether to retain them, or classify them as true outliers (see Chen and Jackson,

1995, for a discussion of what are true outliers) and remove them. So ecologists must be prepared to

identify such points and determine how they will be treated subsequently (e.g. see Filzmoser, 1999).

Our study provides a comparison of a standard method used in multivariate approaches to a robust

method in order to determine whether data sets contain outliers or not. The standard method is based

on the squared Mahalanobis distance calculated using the covariance matrix. Our robust method is

based on the minimum volume ellipsoid (Rousseeuw, 1985a,b) that is a multivariate extension of the

least median of squares. We have selected these two methods as they represent what is the most

common or standard method based on the Mahalanobis approach with what has been proposed as the

most robust method available. We examine the robust, minimum volume ellipsoid in greater detail to

determine the impact that the choice in the size of the subset sampled has on the reliability and

sensitivity of the approach. We evaluate both methods using simulations varying conditions of the
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data. We also demonstrate the use of the robust method with a data set of lake water chemistry to

illustrate the additional insight available.

2. METHODS

2.1. Outlier detection methods

The commonly used method for identifying outliers in multivariate analysis is based on the squared

Mahalanobis distance. For a data matrix

X ¼

x11 � � � xij � � � x1p

: : : : :
xi1 � � � xij � � � xip
xn1 � � � xnj � � � xnp

0
BB@

1
CCA ¼

X1

:
Xi

:
:
Xn

0
BBBBBB@

1
CCCCCCA

the squared Mahalanobis distance is calculated as

MD2ðxi; XÞ ¼ ðxi � TðXÞÞCðXÞ�1ðxi � TðXÞÞt

for each observation, where TðXÞ is a multivariate location estimator (in this case it is the arithmetic

mean) and C(X) is the classical covariance estimate, with the denominator being n�1 rather than n,

and xi being the vector for sample i, and they are calculated as

TðXÞ ¼ �xx

CðXÞ ¼ 1

n� 1

Xn
i¼1

ðxi � TðXÞÞt ðxi � TðXÞÞ

Points for which MD2ðxi; XÞ is large are identified as atypical points or outliers and evaluated using

the �2 distribution with the appropriate degrees of freedom.

A robust method, the minimum volume ellipsoid (MVE), was proposed to identify outliers in

estimating means and covariance for multivariate data by Rousseeuw (1985b). The algorithm for the

MVE can be summarized as follows:

1. For a multivariate data matrix X (as described before), draw a subsample of pþ 1 ( p is the number

of variables in the X matrix) different observations, indexed by J ¼ ð j1; . . . ; jpþ1Þ, and calculate the

arithmetic mean and the corresponding covariance matrix as

�xxJ ¼
1

pþ 1

X
i2J

xi

CJ ¼
1

p

X
i2J

ðxi � �xxJÞtðxi � �xxJÞ

where CJ is non-singular.
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2. Calculate m2
J as

m2
J ¼ med

�
ðxi � �xxJÞC�1

J ðxi � �xxJÞt
�
h:n

where med is the median for i¼ 1 to n, h¼ (nþ pþ 1)/2; the above computation corresponds such

that the ellipsoid is inflated or deflated to contain exactly h points (out of n points).

3. Calculate PJ ¼ ðdetðm2
JCJÞÞ0:5

, which is proportional to the resulting ellipsoid.

4. Repeat the above procedure for many subsamples J, and the one with the lowest PJ is retained.

5. Then compute TðXÞ ¼ �xxJ, and CðXÞ ¼ c2ðn; pÞð�2
p;0:50Þ

�1
m2

JCJ; where c2(n; p) is a small-sample

correction term calculated as [1þ 15/(n-p)]2 and �2
p;0:50 is the median of the �2 distribution with p

degrees of freedom. It is apparent that intensive sampling and computation are required to find the

solution in the MVE analysis. The total amount of subsampling depends on the n and p. Rousseeuw

and Leroy (1987) identified 5000 subsamples as being sufficient. However, based on our

preliminary results, we increased this to 50 000 to enhance the stability of our results similar to the

findings of Jackson and Somers (1989). Based on the MVE-estimated mean T(X) and covariance

C(X), the following statistic, similar to MD2, can be calculated:

Wi ¼ ðxi � TðXÞÞCðXÞ�1ðxi � TðXÞÞt

for an observation i, where if Wi > �p;0:975 it is defined as an outlier; otherwise it is considered to be

a ‘normal’ observation following the approach outlined in Rousseeuw and Leroy (1987). The PCA

was conducted with MVE-defined outliers and normal data having weights of 0 and 1, respectively,

that we identify as a reweighted PCA.

2.2. Data simulation

We examined the influence of various characteristics of the data and the choice of h in the MVE

through a series of simulations. We chose the following approach:

(i) Each data set comprised 50 observations by 4 variables and was simulated following a normal

distribution for each variable for each of the two covariance matrices listed below:

Covariance matrix 1 Covariance matrix 2

4 2 3 3 4 4.24 4.5 3

2 8 2 3 4.24 8 6.36 4.24

3 2 9 1 4.5 6.36 9 4.5

3 3 1 4 3 4.24 4.5 4

(ii) A level of contamination for each data set was set at one of the following levels: 0, 5, 15 or 25 of

the 50 observations. This provided a range of contaminated data between 0 and 50%.

(iii) The mean for each variable in the sample was set at 20, with the mean for the contaminated values

set at one of 12, 20 or 40.

(iv) The variance of the contaminated values was set at either 0.1 or 0.5.

(v) The values of h were set at 20, 25, 27, 30 or 35, where 27 would be the level based on

Rousseeuw’s formula listed above.

This provided a total of 240 scenarios based on the combination of all parameter settings. For each

scenario, 100 data sets were simulated. These were then analyzed to assess the number of outliers
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present using the squared Mahalanobis distance approach and the robust statistical approach from the

MVE. Each of the 100 data sets for each scenario was subsampled 50 000 times to estimate the MVE.

An example was based on the water chemistry data for 34 lakes from the Black River watershed in

south-central Ontario (Jackson, 1988). Environmental variables including pH, sodium, potassium,

chloride and conductivity were used in a PCA based on the correlation matrix.

3. RESULTS AND DISCUSSION

When the data were free of contamination, i.e. no design outliers were present, the Mahalanobis

distance method proved to be a more reliable measure of the number of outliers present, compared

with the MVE. This assessment provided a consistent estimate of a single outlier in the data set

(Figure 2; these graphical results are based on using covariance matrix 1, but those from covariance

matrix 2 show similar effects). In contrast the MVE measure provided estimates ranging from 0.38 to 8

outliers as being present where none were simulated. This variation was due to the setting of the

parameter h in the MVE, and the accuracy of the estimator increased as the value for h was increased.

The average number of outliers was estimated at 1.54 when h¼ 27, providing an estimate slightly

greater than that obtained using the Mahalanobis distance method. In MVE-based scenarios having

h� 27, the results were comparable to those based on the Mahalanobis distance approach.

Introducing a low number of outliers into the data set led to a separation of the two approaches

based of their performance, and this differentiation increased as the degree of contamination was

increased. With the number of outliers set at 5 (i.e. 10%), all of the Mahalanobis-based results

Figure 2. Plot showing the average number of outliers detected as a function of the number of design outliers in the simulations

and the size of the sample (h) used in the minimum volume ellipsoid approach. The diagonal line has a slope of one, providing a

reference for the number of outliers that should be predicted under optimal results. The five top lines show the results from the

five levels of h in the MVE-based method, and the five lower lines are based on the Mahalanobis distance approach. The points

represent the means, and vertical bars are the standard deviations associated with estimates from all simulations for each level of

design outliers
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underestimated the number of outliers present within the data sets (Figure 2). In contrast, all the MVE-

based methods overestimated the number of outliers, with the exception of when h¼ 35. At this level,

the MVE underestimated the number of outliers and provided results similar to those obtained

using the Mahalanobis-based method. At the opposite extreme was the result for h¼ 20, which

indicated that the average data set contained slightly more than 10 outliers (i.e. 20%).

Stepping up the number of design outliers included in the simulations to 15 (i.e. 30%) now clearly

separated the performance of the two approaches. The number of outliers identified by the

Mahalanobis-based method was comparable to that found where only 5 outliers were included (i.e.

approximately 5, versus 4 for the mean levels detected). The MVE-based approach showed that when

h¼ 20 the results were very close to those designed into the simulation, and all other levels of h

underestimated the true level of contamination. The results varied from approximately 10 outliers

detected where h¼ 35 to 14 outliers detected where h¼ 25. There were considerable differences in the

mean number of outliers detected for each level of h depending on the settings of other parameters in

the model. This was shown clearly by the increased standard deviations associated with the estimates,

particularly those when h¼ 35, in contrast to the stable results when h¼ 20.

The most extreme level of contamination was with 25 design outliers being included. This

represented 50% of the observations being considered as unrepresentative of the population. At this

level, the Mahalanobis distance measure indicated an average of 4 outliers present. This is comparable

to the results obtained when only 5 design outliers were included and a decrease from the number

detected when only 15 design outliers were included. This shows that the Mahalanobis based method

becomes increasingly unreliable at higher levels of contamination. The MVE-based results for h¼ 35

showed an identical mean value, but a smaller standard deviation to those obtained when only 15

design outliers were included. The other levels of h also showed increased numbers of outliers

detected and increased standard deviations associated with each level of h where the number of design

outliers was 25 rather than 15. There was a decrease in the overall performance of the MVE-based

estimates relative to the design as the value assigned to h was increased from 20 to 35, and the standard

deviation also increased along this trend.

The principal factors responsible for differences in the number of outliers detected are the number of

design outliers included and how distant these outliers are positioned relative to the population (Tables

1 and 2). There was a significant interaction between the mean of the design outliers and the number of

outliers for both covariance matrices used when evaluated using the MVE approach (Table 2). However,

results varied for the two different covariance matrices when using the Mahalanobis distance approach

(Table 1). A significant interaction was found for covariance matrix 1 but not for covariance matrix 2,

which had the stronger correlation structure between all variables. In this latter case, only the mean

value for the design outliers was a significant factor and the number of design outliers was not a

significant explanatory factor of the number of outliers detected. This matched with the results shown in

Figure 2. The models explained a greater amount of the total variance for the MVE approach relative to

the Mahalanobis method (i.e. approximately 80% versus 40% of the variance explained, respectively).

Within the MVE results, the number of design variables also summarized much more of the variation

associated with the detected outliers than any other factor.

The standard PCA of the water chemistry data set shows that the first axis strongly summarized the

pattern in water conductivity and sodium whereas axis 2 differentiated those lakes having high pH and

calcium values from those with high chloride concentrations (Figure 3a). Analyzing this data set with

an MVE-based PCA identified six lakes as potential outliers (shown as open circles). Closer

examination of these six lakes showed them to have unusually high levels of sodium, and each of

these lakes border on major roads that receive winter salting to remove ice. As such, they have been
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altered from the standard population of lakes in the region. Excluding these points and re-running the

standard PCA provided a different pattern of lakes and association of the variables with the

components (Figure 3b). The first component is now strongly correlated with pH, conductivity,

calcium and sodium. This is a pattern of positive association between pH, cations and conductivity that

is commonly seen in low conductivity PreCambrian Shield lakes. The second axis differentiates the

lakes on the basis of their relative chloride concentrations.

Table 1. Analysis of variance of the number of outliers identified using the Mahalanobis-distance criterion for the
two covariance matrices. The top set of results relates to covariance matrix 1 and the second set to covariance matrix
2. Tables 1 and 2 show only reduced models following the removal of non-significant interactions and main effects

Source Degrees of Sum of F-value Associated Model
freedom squares P-value R-squared

Model 4 32.53 8.13 0.036 0.402
Error 19 48.32 2.54
Corrected total 23 80.85

C(X) 1 0.246 0.10 0.759
Mean 1 1.464 0.58 0.457
# Outliers 1 4.098 1.61 0.220
Mean*#outliers 1 26.729 10.51 0.004
Model 4 36.45 3.00 0.045 0.387
Error 19 57.78
Corrected total 23 94.23

C(X) 1 0.130 0.04 0.838
Mean 1 2.109 0.69 0.006
# Outliers 1 5.404 1.78 0.415
Mean*#outliers 1 28.805 9.47 0.198

Table 2. Analysis of variance of the number of outliers identified using the minimum volume ellipsoid criterion
for the two covariance matrices. The top set of results relates to covariance matrix 1 and the second set to

covariance matrix 2

Source Degrees of Sum of F-value Associated Model
freedom squares P-value R-squared

Model 4 3360.57 840.14 0.0001 0.793
Error 115 874.90 7.608
Corrected total 119 4235.47

C(X) 1 2.45 0.32 0.572
Mean 1 0.17 0.02 0.882
# Outliers 1 3282.31 431.44 0.0001
Mean*#outliers 1 75.64 9.94 0.0021
Model 4 3748.23 134.20 0.0001 0.824
Error 115 803.00
Corrected total 119 4551.24

C(X) 1 2.307 0.33 0.567
Mean 1 0.069 0.01 0.921
# Outliers 1 3709.23 531.21 0.0001
Mean*#outliers 1 36.64 5.25 0.0238
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Although several of these six lakes may have been noted as being somewhat atypical in a standard

PCA, at least one of these points would have escaped detection. One point specifically falls within the

general cloud on the first three axes and may not have been noticed at all. Even had some of the points

been recognized and considered outliers, the explanation of the common cause, i.e. road salt, may not

have been determined. As a result one would not have known whether these lakes accurately

represented: part of the natural range of variation; samples contaminated in the field; inadequately

analyzed samples in the laboratory; or whether these lakes actually represented a different population.

The MVE-based PCA suggests the latter explanation as being the most likely.

Figure 3. (a) Scatterplot of axes 1 and 2 from a standard principal component analysis of water chemistry variables from 34

lakes. Variables having strong loadings on either axis 1 or 2 are shown associated with them. Points shown with an open circle are

those identified as atypical using the MVE-based PCA. These points were examined, removed and the standard PCA

recalculated on the remaining 28 lakes and shown in (b)
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In general the performance of the Mahalanobis-distance-based approach showed a low breakpoint.

It underperformed the MVE-based approach whenever outliers were present and it rapidly failed in

detecting outliers as the degree of contamination increased. In fact, when contamination levels

continued to increase, there was actually a decrease in the number of outliers detected. In contrast, the

MVE-based approach was much more successful in detecting outliers, but still tended to under-

estimate the number present when they represented more than about 10% of the data values. These

results about the higher breakpoint for MVE-based methods are consistent with others’ findings (e.g.

Chen et al., 1994; Seaver and Triantis, 1995: Kosinski, 1998; Marden, 1999).

When there are no atypical points in the data sets, the Mahalanobis distance measure provides the

best method of assessment. However, this technique quickly underestimates the number of atypical

points when they are present. This effect becomes most pronounced as the number of outliers is

increased. The sensitivity of this method in detecting outliers depends on the conditions of how

different the mean of the outliers is relative to the remainder of the sample and the different covariance

matrix structures. The minimum volume ellipsoid (MVE) approach proved to be superior to the

Mahalanobis distance approach in all cases where outliers were present. However, where outliers were

absent in the data, the MVE method tended to identify some observations as being atypical. In most

instances the examination of the plots from a PCA based on the MVE provide additional insight as to

whether these atypical points really appear different or not. In these cases where no design outliers

were present, one can typically recognize this condition from the MVE-generated PCA plots. Closer

examination of these points and their underlying variables provides aids in determining whether these

points should be considered true outliers and removed from the analysis. This approach was taken with

the water chemistry example. We are not advocating the automatic removal of any points considered to

be atypical without careful examination of them (see Chen et al., 1994; Chen and Jackson, 1995, for

further discussion). By carefully examining the identified observations, and considering independent

measures or information, one may be able to determine whether the points in question are true outliers

or simply extreme observations (see Chen and Jackson, 1995, for a discussion), thereby allowing

analysts to better determine how such problematic observations should be treated. Although the

minimum volume ellipsoid approach overestimates the number of atypical observations when none or

few are present, proper consideration and evaluation of these identified points should allow one to

exclude those that are not correct and retain those that should be included. However, the failure of the

Mahalanobis distance method to identify true outliers is of greater concern as no further consideration

of these observations is possible, nor is any corrective action taken.

The choice in the value of h in the MVE appears to have a considerable effect on its error rate in

detecting outliers. At low values of h, the technique has a high Type I error rate, but also has more

power in detecting outliers when they are present, particularly when they represent large proportions

of the data set. High values of h provide low Type I error rates, but have more limited power in

detecting outliers where present. However all levels of h provide superior outlier detection than the

Mahalanobis distance method when outliers were present. Rousseeuw and Leroy (1987) advocated

that the value of h should be just slightly above half the total for the number of observations and

variables (i.e. h¼ [nþ pþ 1]/2). Based on our simulations this provides a reasonable compromise

between the error rates associated with either higher or lower values of h.

4. CONCLUSIONS

We emphasize that researchers should consider that their data may contain atypical points, and our

experience with many ecological and environmental data sets suggests that they occur frequently. Such
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statements of concern regarding outliers have been made previously (e.g. Hinch and Somers, 1987),

although the tools and methods available to detect outliers have been enhanced greatly. Following

checks associated with normality, bivariate linearity and other traditional aspects, we advocate that

researchers examine their data sets using robust methods, in particular the minimum volume ellipsoid

approach. Points identified as being atypical should be carefully evaluated to determine their

suitability for inclusion and whether additional factors explain their unusual characteristics. Following

these assessments, the PCA can be carried out using traditional approaches with any designated

outliers removed or downweighted. Such points can be projected onto the solution a posteriori if their

inclusion is desired. The more robust measure of correlation/covariance may often lead to more

insightful interpretations of the data pattern rather than simply contrasting a few atypical observations

with the general sample.
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