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SUMMARY

1. The prediction of species distributions is of primary importance in ecology and

conservation biology. Statistical models play an important role in this regard; however,

researchers have little guidance when choosing between competing methodologies

because few comparative studies have been conducted.

2. We provide a comprehensive comparison of traditional and alternative techniques for

predicting species distributions using logistic regression analysis, linear discriminant

analysis, classification trees and artificial neural networks to model: (1) the presence ⁄
absence of 27 fish species as a function of habitat conditions in 286 temperate lakes located

in south-central Ontario, Canada and (2) simulated data sets exhibiting deterministic,

linear and non-linear species response curves.

3. Detailed evaluation of model predictive power showed that approaches produced

species models that differed in overall correct classification, specificity (i.e. ability to

correctly predict species absence) and sensitivity (i.e. ability to correctly predict

species presence) and in terms of which of the study lakes they correctly classified.

On average, neural networks outperformed the other modelling approaches, although

all approaches predicted species presence ⁄absence with moderate to excellent

success.

4. Based on simulated non-linear data, classification trees and neural networks greatly

outperformed traditional approaches, whereas all approaches exhibited similar correct

classification rates when modelling simulated linear data.

5. Detailed evaluation of model explanatory insight showed that the relative importance of

the habitat variables in the species models varied among the approaches, where habitat

variable importance was similar among approaches for some species and very different for

others.

6. In general, differences in predictive power (both correct classification rate and identity

of the lakes correctly classified) among the approaches corresponded with differences in

habitat variable importance, suggesting that non-linear modelling approaches (i.e.

classification trees and neural networks) are better able to capture and model complex,

non-linear patterns found in ecological data. The results from the comparisons using

simulated data further support this notion.

7. By employing parallel modelling approaches with the same set of data and focusing on

comparing multiple metrics of predictive performance, researchers can begin to choose
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predictive models that not only provide the greatest predictive power, but also best fit the

proposed application.

Keywords: artificial neural networks, classification trees, discriminant analysis, logistic regression,
species presence ⁄absence

Introduction

Ecologists have long been interested in understand-

ing and predicting the distributions of species across

landscapes (Orians, 1980; Buckland & Elston, 1993;

Pickett, Kolasa & Jones, 1994; Lawton, 1996; Gaston

& Blackburn, 1999). However, the relative emphasis

placed on the explanatory and predictive compo-

nents of this ecological research varies substantially

across disciplines and taxa (Keddy, 1992). For

example, plant ecologists have traditionally spent

more effort on developing models to predict species

distributions (e.g. Hill & Keddy, 1992; Toner &

Keddy, 1997; Wiser, Peet & White, 1998), as have

stream ecologists in predicting the occurrence of

invertebrates (e.g. Bailey et al., 1998; Chessman, 1999;

Moss et al., 1999) and fish (e.g. Scheller et al., 1999;

Oberdorff et al., 2001). In contrast, lake ecologists

have generally focused on understanding species-

environment processes rather than attempting to

formulate this knowledge into testable, predictive

models. Moreover, models that have been developed

have primarily focused on making predictions at

small spatial scales (stream reaches or lakes within a

single watershed), as opposed to landscape or

regional scales.

Our understanding of fish-environment associ-

ations in lakes has emerged primarily from compar-

ative studies that describe statistical relationships

between sets of environmental variables and species

occurrence or abundance (see Jackson, Peres-Neto &

Olden, 2001 for a review). Such studies (e.g. Jackson &

Harvey, 1989; Tonn et al., 1990; Rodriguez & Lewis,

1997; Magnuson et al., 1998) identify the influence of

abiotic conditions (lake morphology, water chem-

istry), biotic interactions (predation, competition),

habitat isolation and human-related factors (e.g.

land-use practices) in structuring fish populations at

local, landscape and regional spatial scales. The next

and often missing essential step is to place this

understanding in a quantitative framework where

species distributions can be readily and accurately

predicted from these environmental factors. More

than ever, predictive models are urgently needed as

the modification and loss of aquatic habitat is now

recognised as the primary factor threatening the

conservation of fish populations and communities

throughout many parts of the world (Williams et al.,

1989; Richter et al., 1997; Harig & Bain, 1998; Ricciardi

& Rasmussen, 1999).

Predictive models have a number of important

applications for the conservation and management of

fish populations. Predictive fish-habitat models can

play an important role in prioritising surveys and

monitoring programmes for fish populations because

limitations to resources often preclude exhaustive and

continual sampling of sites and that extensive

sampling is needed to accurately sample lake fish

communities (Jackson & Harvey, 1997). Applications

of model predictions include: (1) forecasting or

measuring the effects of habitat alteration and chan-

ging land-use patterns (Oberdorff et al., 2001); (2)

providing first-order estimates of habitat suitability to

establish potential locations for re-introduction (Evans

& Oliver, 1995); (3) predicting the likelihood of local

establishment and spread of exotic species (Peterson

& Vieglais, 2001) that may help set conservation

priorities for preserving vulnerable species and

populations that might be lost locally; (4) predicting

‘hotspots’ of species persistence for the conservation

of biodiversity (Williams & Araujo, 2000); and (5)

revealing additional populations of threatened spe-

cies, or alternatively revealing unexpected gaps in

their range.

Although there are obvious conservation implica-

tions from being able to quantify the predictability of

species distributions, the development of these mod-

els is a difficult task because patterns of fish occur-

rence and abundance commonly exhibit complex,

non-linear relationships to habitat heterogeneity and

biotic interactions. Of the statistical approaches,

logistic regression and linear discriminant analysis

are most commonly used, although our confidence in

their results is often limited by the inability to meet a

number of assumptions, such as statistical distribu-

tions of variables, independence of variables and
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model linearity (James & McCulloch, 1990). Conse-

quently, researchers are now recognising the potential

utility of non-linear statistical approaches such as

classification and regression trees (e.g. Magnuson

et al., 1998; Rathert et al., 1999; Rejwan et al., 1999;

De’ath & Fabricius, 2000), artificial neural networks

(e.g. Lek et al., 1996; Mastrorillo et al., 1997; Brosse &

Lek, 2000; Olden & Jackson, 2001) and genetic

algorithms (e.g. D’Angelo et al., 1995) for modelling

ecological data. It is believed that these alternative

approaches can provide researchers with more flex-

ible tools for modelling complex ecological relation-

ships. Although it is encouraging that a broad array of

quantitative approaches is currently available to

model species distributions, we are now faced with

the difficulty of choosing among a large number of

competing statistical methodologies. In a recent syn-

thesis, Guisan & Zimmermann (2000) highlighted the

need for comparative studies where more than two

statistical methods are applied to the same data set to

help address this problem, as these comparisons are

lacking in the literature.

The primary objective of our study is to compare

the predictive power and explanatory insight pro-

vided by traditional, linear approaches (i.e. logistic

regression analysis and linear discriminant analysis)

and alternative, non-linear approaches (i.e. classifica-

tion trees and artificial neural networks) for modelling

species presence ⁄absence. We address this objective

by developing fish-habitat models for 27 fish species

in north-temperate lakes of Canada and providing a

detailed evaluation and comparison among species

and among the four modelling approaches. Compar-

isons involve both the predictability of species based

on a number of performance metrics and the relative

importance of the habitat variables for predicting the

occurrence of the species. To strengthen the meth-

odological comparisons, we test the performance of

the four modelling approaches in predicting simula-

ted patterns of species presence ⁄absence across an

environmental gradient. The results from this com-

parison demonstrate the predictive ability of these

various approaches under known conditions, thus

providing a robust comparison of methodologies that

can be generalised with other data. Taken together,

these comparative analyses are advancements over

more conventional model evaluations and provide

important information regarding the comparison of

modelling approaches and insight into the predict-

ability of fish species occurrence across large spatial

scales.

Methods

Study site and ecological data

The study system consisted of 286 freshwater lakes

from five drainage basins located in Algonquin

Provincial Park, south-central Ontario, Canada

(Fig. 1). Algonquin Provincial Park (7630 km2) is

situated on Precambrian Canadian Shield bedrock

and is located in the transition zone between the

northern boreal and the southern deciduous hard-

wood forests. Aquatic communities in this region

represent relatively natural ecosystems because these

lakes are located in a provincial park and are subject

to minimal perturbations from development and

species introductions, although there were some

species introductions (e.g. smallmouth bass) during

the early 1900s, which have subsequently colonised

some adjacent waters. We developed fish-habitat

models for 27 fish species (Table 1) by modelling

species presence ⁄absence as a function of 12 or 13

whole-lake habitat characteristics (Table 2). These

predictor variables were chosen to include factors

related to habitat requirements of fish in this region

(e.g. Matuszek & Beggs, 1988; Minns, 1989) and

included: lake surface area; lake volume; total shore-

line perimeter (sum of lake and island perimeters);

maximum depth; surface measurements (taken at

depths £ 2.0 m) of total dissolved solids and pH;

lake altitude; growing degree-days (the average daily

temperature above 5 �C, summed across all days);

occurrence of summer thermal stratification (calcula-

ted as a function of thermocline depth and maximum

depth; see Hanna, 1990); occurrence of a large littoral-

zone piscivore (i.e. northern pike, smallmouth bass or

largemouth bass) when modelling small-bodied fish;

and three binary variables used in combination to

delineate the five drainage basins, i.e. Amable

du Fond, Bonnechere, Madawaska, Oxtongue and

Petawawa Rivers, to account for the potential influ-

ence of biogeography on fish distributions. All data

were obtained from the Algonquin Park Fish Inven-

tory Data Base; a data base that involved a combina-

tion of extensive sampling of lakes in the park during

1989–91 using multiple gear types (multipanel survey

gill nets, plastic traps, seines, Gee minnow traps) and
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Table 1 List of fish species (organised by family), including species abbreviation (Code) and frequency of occurrence (%)

in the 286 study lakes

Code Common name Scientific name %

Catostomidae

LS Longnose sucker Catostomus catostomus (Forster, 1773) 18.5

WS White sucker Catostomus commersoni (Lacepède, 1803) 83.6

Centrarchidae

PKS Pumpkinseed Lepomis gibbosus (Linnaeus, 1758) 65.0

RB Rock bass Ambloplites rupestris (Rafinesque, 1817) 12.2

SMB Smallmouth bass Micropterus dolomieu Lacepède, 1802 21.3

Cyprinidae

BCS Blackchin shiner Notropis heterodon (Cope, 1865) 5.6

BNS Blacknose shiner Notropis heterolepis Eigenmann & Eigenmann, 1893 40.6

CC Creek chub Semotilus atromaculatus (Mitchill, 1818) 68.2

CS Common shiner Luxilus cornutus (Mitchill, 1817) 54.2

F Fallfish Semotilus corporalis (Mitchill, 1817) 11.2

FSD Finescale dace Phoxinus neogaeus Cope, 1868 15.0

GS Golden shiner Notemigonus crysoleucas (Mitchill, 1814) 39.9

LC Lake chub Couesius plumbeus (Agassiz, 1850) 16.4

NRD Northern redbelly dace Phoxinus eos (Cope, 1862) 54.5

PD Pearl dace Margariscus margarita Cope, 1868 41.3

Gadidae

B Burbot Lota lota (Linnaeus, 1758) 30.8

Fig. 1 Map of 286 study lakes located in Amable du Fond River (n), Bonnechere River (+), Madawaska River (d), Oxtongue River (m)

and Petawawa River (·) basins of Algonquin Provincial Park, Ontario, Canada (45�50¢N, 78�20¢W).
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records obtained from the Ontario Ministry of Natural

Resources Lake Inventory and the Royal Ontario

Museum collection (see Crossman & Mandrak, 1992).

The standardised sampling methodology for this

inventory is described in Dodge et al. (1985).

Simulated data

We compared the predictive performance of logistic

regression analysis, linear discriminant analysis, clas-

sification trees and neural networks (more details are

provided in the section Statistical approaches to model-

ling species presence ⁄absence) using a Monte Carlo

simulation experiment with data exhibiting defined

numerical relationships between species occurrence

and a habitat gradient. A number of species response

curves are seen in nature including linear, logarith-

mic, logistic and Gaussian (Fig. 2a: also see Jongman,

ter Braak & van Tongeren, 1995, pp. 31–32). For

example, patterns in the probability of occurrence of

various fish species commonly exhibit linear, log-

arithm, logistic and Gaussian responses to patterns in

shoreline complexity, lake area, lake maximum depth

and pH, respectively. However, because species are

observed as either present or absent at a site, the

linear, logarithmic and logistic response curves are

seen as a step function (Fig. 2b) and the Gaussian

response curve as a block function (Fig. 2c). Conse-

quently, we generated two statistical populations

following Fig. 2b,c (the Gaussian response curve

Table 1 (Continued)

Code Common name Scientific name %

Gasterosteidae

BSB Brook stickleback Culaea inconstans (Kirtland, 1841) 27.3

Ictaluridae

BB Brown bullhead Ameiurus nebulosus (Lesueur, 1819) 47.2

Percidae

ID Iowa darter Etheostoma exile (Girard, 1859) 20.3

YP Yellow perch Perca flavescens (Mitchill, 1814) 71.0

Percopsidae

T-P Trout-perch Percopsis omiscomaycus (Walbaum, 1792) 9.4

Salmonidae

BT Brook trout Salvelinus fontinalis (Mitchill, 1814) 76.9

C Cisco Coregonus artedi Lesueur, 1818 21.3

LT Lake trout Salvelinus namaycush (Walbaum, 1792) 52.8

LW Lake whitefish Coregonus clupeaformis (Mitchill, 1818) 13.6

RW Round whitefish Prosopium cylindraceum (Pallas, 1784) 10.5

SL Splake S. fontinalis · S. namaycush 7.7

Table 2 Summary statistics for the habitat variables used in model development to predict species presence ⁄absence

in the 286 study lakes

Predictor variable Minimum First quartile Median Third quartile Maximum

Surface area (ha) 1.6 24.3 54.5 151.7 5154.2

Volume (·104 m3) 1.0 8.3 29.0 91.4 8560.0

Total shoreline perimeter (km) 1.0 3.0 6.0 12.0 171.0

Maximum depth (m) 1.5 9.5 15.1 24.4 107.4

Altitude (m) 165 390 415 442 488

pH 5.5 6.5 7.0 7.0 8.0

Total dissolved solids (mg L)1) 2.0 22.2 27.0 32.0 210.0

Growing degree days 1613 1624 1625 1638 1797

Occurrence of summer stratification 0 – Absence, 1 – Presence

Occurrence of littoral-zone piscivore 0 – Absence, 1 – Presence

Three drainage basin dummy variables 0, 1
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characterised by a mean of five and a variance of one),

each containing 10 000 observations (where an obser-

vation is the presence or absence of a species at a

particular site) and with values of a single habitat

variable ranging from zero to 10 (data points were

generated at uniform distances along the variable).

Note that the response variables were simulated to

have equal numbers of presence and absence values.

The Monte Carlo experiment consisted of randomly

sampling 30 observations from the statistical popula-

tion, constructing a logistic regression model, discri-

minant function, classification tree and neural

network and recording overall per cent correct clas-

sification (more details are provided in the section

Model construction, validation and performance metrics).

This procedure was repeated 500 times to ensure that

meaningful conclusions emerged and summary sta-

tistics were calculated. A sample size of 30 was chosen

as this corresponded to the mean sample size (29.3)

based on a review of 98 statistical models reported in

the literature (Tables 1–5 in Fausch, Hawkes &

Parsons, 1988) and thus represents a sample size that

provides a reasonable degree of generality. The step-

function response curve (which is generated from the

linear, logarithmic or logistic curves) represents

‘optimal’ data types for the traditional linear approa-

ches in terms of distributional characteristics, whereas

the Gaussian response curve represents a non-linear

relationship where the probability of species occur-

rence or abundance is maximised at intermediate

values of a habitat variable.

Statistical approaches to modelling species

presence ⁄absence

We applied logistic regression analysis (LRA), linear

discriminant analysis (LDA), classification trees (CFT)

and artificial neural networks (ANN) to develop

predictive models for fish species presence ⁄absence.

Because of their well-documented use in the ecolo-

gical literature, we refrain from detailing LRA and

LDA methodologies, providing only a brief descrip-

tion (referring the reader to Hand, 1997 for a

comprehensive coverage). The LRA is a class of linear

models that are parameterised using a maximum

likelihood principle and are based on a logistic

transformation of the response variable with a linear

combination of the independent variables. The LDA is

a standard multivariate method that seeks a linear

combination of the independent variables to maxi-

mally separate between-class means (two classes:

presence and absence) relative to the within-class

variance. In contrast, researchers are generally less

familiar with CFT and ANN and therefore we discuss

these methodologies at greater length.

Classification trees. The use of automatic construction of

classification or decision trees dates from the pioneer-

ing work of Morgan & Sonquist (1963) in the social

sciences, but was rekindled in the statistical literature

by the seminal monograph of Breiman et al. (1984).

Classification and regression trees have been used

extensively in the social and medical sciences, but only

recently recognised as potentially powerful tools for

modelling ecological data (De’ath & Fabricius, 2000).

Classification and regression trees are nonparametric,

classification techniques that are most commonly

implemented using a recursive-partitioning algorithm.

This algorithm repeatedly partitions the data set into a

Fig. 2 (a) Species response curves where the probability of

species occurrence can have either linear or non-linear rela-

tionships with an environmental gradient; (b) simulated data

where species occurrence has a linear response to a single

environmental variable [represented as a step-function when the

linear, logarithmic or logistic response curves in (a) are con-

verted to a presence ⁄absence response]; (c) simulated data

where species occurrence has a non-linear response to a single

environmental variable [represented as a block-function when

the Gaussian response curve in (a) is converted to a presence ⁄
absence response]. See text for more details regarding the

simulation of data sets.
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nested series of mutually exclusive groups, each of

them as homogeneous as possible with respect to the

response variable. When modelling species

presence ⁄absence, the procedure begins with the entire

data set, also called the root node, and formulates split-

defining conditions for each possible value of the

explanatory variables to create candidate splits. Next,

the algorithm selects the candidate split that minimises

the misclassification rate and uses it to partition the data

set into two subgroups. The algorithm continues

recursively with each of the new subgroups until no

split yields a significant decrease in the misclassifica-

tion rate, or until the subgroup contains a small number

of observations. A terminal subgroup or ‘leaf’ is a node

that the algorithm cannot partition any further because

of group size or because it is a relatively homogeneous

group in terms of the values of the response variable.

The response class (in this case the presence or absence

of a species) for each terminal node is assigned by

minimising the resubstitution estimate of the prob-

ability of misclassification for the observations of that

node. For more detailed accounts on classification trees,

see Breiman et al. (1984) and De’ath & Fabricius (2000).

In this study, we employed a discriminant-based,

univariate split-selection method based on the algo-

rithms used in QUEST (Quick, Unbiased, Efficient

Statistical Trees: Loh & Shih, 1997). The QUEST

provides an unbiased method for variable selection

during tree construction, where bias is commonly

associated with predictor variables containing few or

many levels and can consequently skew the inter-

pretation of variable importance in the tree (Breiman

et al., 1984). Furthermore, QUEST has been shown to

exhibit one of the best combinations of error rate and

speed compared with 22 other decision-tree algo-

rithms using 32 data sets (Lim, Loh & Shih, 2000). To

determine the optimal size of each tree (i.e. the number

of terminal nodes), the mode of 50 repeated cross-

validations using the one standard-error rule (Breiman

et al., 1984) was used and splitting was stopped when

nodes contained less than five observations. The

relative importance of each predictor variable in each

CST was estimated by summing the changes in

misclassification (also called impurity) for each surro-

gate split across all nodes and was expressed on a

0–100 scale (see Breiman et al., 1984, p. 147 for details).

Artificial neural networks. Although ANNs were ori-

ginally developed to better understand how the

mammalian brain functions, researchers have become

more interested in the potential statistical utility of

neural network algorithms (Cheng & Titterington,

1994; Bishop, 1995). In this study, we used one-

hidden-layer feedforward neural network trained by

the backpropagation algorithm (Rumelhart, Hinton &

Williams, 1986). We used this type of network because

it is considered to be a universal approximator of any

continuous function (Hornik, Stinchcombe & White,

1989) and we used a single hidden layer because this

is generally satisfactory for statistical applications

(Bishop, 1995), it greatly reduces computational time

and generally produces similar results compared with

multiple hidden layers (Kurková, 1992).

The one-hidden-layer feedforward network consists

of single input, hidden and output layers, with each

layer containing one or more neurones. The input

layer contains p neurones, each of which represents

one of the p predictor variables, i.e. in our case 12

input neurones for each species, except for small-

bodied species where the input layer contained 13

neurones (including the littoral-zone piscivore vari-

able). The optimal number (optimal referring to

minimising the trade-off between network bias and

variance) of hidden neurones in the neural network is

determined empirically by choosing the number of

hidden neurones that produces the lowest misclassi-

fication rate (Bishop, 1995). The output layer contains

one neurone representing the probability of species

occurrence. An additional bias neurone with a con-

stant output (equal to one) is added to the hidden and

output layers, and plays a similar role to that of the

constant term in multiple regression analysis. Each

neurone (excluding the bias neurones) is connected to

all neurones from adjacent layers by axons, and the

axon connection between neurones is assigned a

weight that dictates the intensity of the signal trans-

mitted by the axon. In feedforward networks, axon

signals are transmitted in a unidirectional path, from

input layer to output layer through the hidden layer.

The ‘state’ or ‘activity level’ of each neurone is

determined by the input received from the other

neurones connected to it. For example, the state of

each input neurone is defined by the incoming signal

(i.e. values) of the predictor variables and the states of

the other neurones are evaluated locally by calcula-

ting the weighted sum of the incoming signals from

the neurones of the previous layer. The entire process

can be written mathematically as:
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yk ¼ /o

�
bk þ

X
j

wjk/h

�
bj þ

X
i

wijxi

��
ð1Þ

where xi are the input signals, yk are the output

signals, wij are the weights between input neurone i

and hidden neurone j, wjk are the weights between

hidden neurone j and output neurone k, bj and bk are

the bias associated with the hidden and output layers,

and /h and /o are activation functions for the hidden

and output layers. There are several activation func-

tions (see Bishop, 1995), but the logistic (or sigmoid)

function was employed, as it is the most commonly

used.

Training the neural network involves the back-

propagation algorithm where the goal is to find a set

of connection weights that minimises an error func-

tion. The cross-entropy criterion, similar to log-likeli-

hood criterion, is minimised during network training

for a dichotomous response variable:

E ¼ �
X

n

tn ln yn þ ð1 � tnÞ lnð1 � ynÞf g ð2Þ

where tn is the observed output value and yn is the

predicted output value for observation n. Observa-

tions are sequentially presented to the network and

weights are adjusted after each output is calculated

depending on the magnitude and direction of the

error. This iterative technique of minimising the error

is known as gradient descent, where weights are

modified in the direction of greatest descent, travel-

ling ‘downhill’ in the direction of the minimum.

The explanatory importance of each environmental

variable was quantified by calculating the product of

the connection weights (i.e. input-hidden · hidden-

output weights) between its input neurone and the

output neurone and then summing the products across

all hidden neurones. This procedure is repeated for

each environmental variable and the relative contri-

butions of the variables were calculated by dividing

the absolute value of each variable contribution by

the grand sum of all absolute variable contributions.

This method provides a measure of the explanatory

importance of each environmental variable, which

were subsequently assessed for their statistical signi-

ficance using a randomisation test. This test rando-

mises the response variable, then constructs a neural

network using the randomised response variable and

the original predictor variables and records the relative

explanatory importance of each environmental vari-

able. This process is repeated 9999 times to generate a

null distribution for the relative importance of each

variable, which is then compared with the observed

values to calculate the significance level. By using the

product of the connection weights (rather than merely

summing the absolute value of each input-hidden

and hidden-output connection weight separately), we

account for the fact that the direction of the connec-

tion weights (i.e. positive or negative) can switch

between different networks optimised with the same

data (i.e. referred to as symmetrical interchanges of

weights: Ripley, 1994) without having any effect on the

relationship between the input and output neurone.

Note that this phenomenon may result in incorrect

estimates of variable importance using the commonly

employed Garson’s algorithm (Garson, 1991: see

Olden & Jackson, 2002). We refer the reader to Olden

& Jackson (2002) for more details on calculating

variable contributions and testing their significance

using the randomisation approach.

For all analyses, the optimal number of neurones in

the hidden layer was determined empirically by

comparing the performances of different cross-val-

idated networks with one to 25 hidden neurones (one

to five hidden neurones for the simulation experi-

ment) and choosing the number that produced the

greatest predictive performance. Learning rate (g) and

momentum (a) parameters (varying as a function of

network error) were included during network train-

ing to ensure a high probability of global network

convergence (see Bishop, 1995 for details) and a

maximum of 1000 iterations were used for the

backpropagation algorithm to determine the optimal

axon weights. Furthermore, to minimise the potential

for network overfitting, we used the simplest network

architecture (i.e. smallest number of hidden neurones)

where equivalent network configurations exhibit

identical predictive performance. Prior to training

the network, the independent variables were conver-

ted to z-scores to standardise the measurement scales

of the inputs into the network and thereby ensure that

same percentage change in the weighted sum of the

inputs caused a similar percentage change in the unit

output.

Model construction, validation and performance metrics

To evaluate predictive performance, all models

(including fish-habitat and simulation models) were
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validated using a ‘leave-one-out’ cross-validation

method. This method excludes one observation, con-

structs the model with the remaining n)1 observa-

tions and then predicts the response of the excluded

observation using this model. This procedure is repea-

ted n times so that each observation, in turn, is

excluded in model construction and its response is

predicted. Cross-validation was used as it has been

shown to produce nearly unbiased estimates of pre-

diction error compared with the commonly used

resubstitution approach where the same data are used

in model construction and validation (Olden &

Jackson, 2000). This analysis provided an opportunity

to accurately assess the transferability or general-

isation of the models to other lakes in the same

geographical region.

The output value from the LRA, LDA, CFT and

ANN models range from 0 to 1, representing the

probability of species occurrence in a particular lake.

Rather than simply following the conventional deci-

sion threshold of 0.5 to classify a species as present or

absent, we constructed Receiver-Operating Character-

istic (ROC) plots for each species to estimate the

predictive ability of the models over all decision

thresholds (Fielding & Bell, 1997; Hand, 1997). An

ROC graph is a plot of the sensitivity ⁄specificity pairs

(defined below) resulting from continuously varying

the decision threshold over the entire range of results

observed. The optimal decision threshold was chosen

to maximise overall classification performance of the

model, given equal costs of misclassifying the species

as present or absent. Using the optimal decision

threshold, we partitioned the overall classification

success of each species model by deriving ‘confusion

matrices’ following Fielding & Bell (1997). Using these

matrices we examined three metrics of model

performance. First, we quantified the overall classifi-

cation performance of the model as the percentage of

lakes where the model correctly predicted the

presence or absence of the species (CC). Secondly,

we examined the ability of the model to correctly

predict species presence, termed model sensitivity

(SE). Thirdly, we examined the ability of the model to

correctly predict species absence, termed model

specificity (SP). Cohen’s j statistic (Titus, Mosher &

Williams, 1984) was used to assess whether the

performance of the model differed from expectations

based on chance alone as this measure is relatively

independent of species prevalence or frequency of

occurrence (Manel, Williams & Ormerod, 2001). Data

characteristics of the habitat variables were screened

prior to analyses, which resulted in using ln(x)

transformed values of all continuous variables (except

pH) for the LRA and LDA models, whereas the raw

data were used in the CFT and ANN models.

McNemar’s test (with Yates correction for continuity;

Zar, 1999) was used to compare patterns of lake

misclassifications among LRA, LDA, CFT and ANN

for each species. Spearman rank-correlation coeffi-

cients between absolute values of standardised

regression coefficients (LRA), standardised canonical

coefficients (LDA), relative percentage importance

(CFT) and variable contributions (ANN) were used

to compare patterns in the importance of the habitat

variables for predicting the occurrence of each species.

All analysis for LRA, LDA and ANN were conduc-

ted using macros in the MatLab programming lan-

guage (written by the authors) and CFT using

Statistica software (StatSoft Inc., 1998).

Results

Comparison of modelling approaches: fish

distributions in Algonquin Provincial Park

Predictability of species distributions. Predictability of

species presence ⁄absence, on average, was high

across the 27 species based on the four modelling

approaches with correct classification ranging

between 80 and 85%, specificity ranging between 75

and 85% and sensitivity ranging between 35 and 70%

(Fig. 3). Comparison among the approaches showed

no significant differences in correct classification

(Kruskal–Wallis: H ¼ 4.167, P ¼ 0.244) and specificity

(H ¼ 4.281, P ¼ 0.233), but significant differences in

sensitivity (H ¼ 15.984, P ¼ 0.001), which were

attributed to significantly higher sensitivity of ANNs,

compared with all other approaches (Mann–Whitney:

U ¼ 170.0–209.5, P ¼ 0.0007–0.007).

Rates of correct classification, specificity and sensi-

tivity varied among species and among modelling

approaches (Table 3). Accounting for both the mag-

nitude and directionality (i.e. specificity, sensitivity) of

species predictability, Cohen’s j test showed that

LRA, LDA, CFT and ANN produced 20, 20, 13 and 25

species-habitat models, respectively, whose numbers

of correct predictions are greater than expectations

based on chance. Because model performances are

1984 J.D. Olden and D.A. Jackson
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relatively independent from the influence of species

prevalence in the data set, the interpretation of model

predictions (i.e. species predictability in the study

lakes) is acceptable. Comparisons among species

show that for some species their absence was better

predicted (e.g. cisco, smallmouth bass), for some

species their presence was better predicted (e.g. brook

trout, yellow perch) and others exhibited similar

levels of specificity and sensitivity (e.g. brown bull-

head, lake trout). Furthermore, although many species

were correctly classified with equal success, direc-

tional strengths in their predictions often differed (e.g.

smallmouth bass, brook trout). Comparisons among

modelling approaches showed that the magnitude of

differences in correct-classification success varied

greatly from almost no difference (e.g. brown bull-

head, pearl dace) to larger differences between ANN

and the other three approaches (e.g. cisco, smallmouth

bass) (Table 3).

McNemar’s test indicated a number of differences

among approaches in the identity of the lakes that

were misclassified (synonymous with differences in

the identity of the lakes correctly classified). Fig. 4

shows statistically significant pair-wise differences

between modelling approaches, highlighting which

approaches differed in patterns of lake misclassifica-

tion for each fish species. Of the 45 significant pair-

wise differences between approaches (note that no

correction of a was made to maintain family wide

error rate but only six pair-wise comparisons were

made for each species), 30 (67%) were between linear

and non-linear techniques (i.e. LRA or LDA and CFT

or ANN), corresponding exactly with the expected

proportion of pair-wise differences between linear

and non-linear approaches (four of six compari-

sons ¼ 67%). However, 38 of 45 pair-wise differences

existed between ANN and the other three approaches.

It is important to note that because all four approaches

predicted species presence ⁄absence with moderate to

high degrees of success, the results from the McNe-

mar’s test generally represent differences in the

overall classification success among the modelling

approaches. For example, when all four approaches

produced significant predictions of presence ⁄absence

(13 species: Table 3), minimal differences were

observed in patterns in lake misclassification among

the approaches (Fig. 4). The results showed that

when the modelling approaches did exhibit differ-

ences in overall correct classification, the specific

lakes that were misclassified also differed. For

example, lakes where cisco, smallmouth bass and

finescale dace were misclassified differed between

ANN and the other three approaches and this result

was related to the higher classification success of

ANN (Table 3). However, patterns in lake misclassi-

fication also differed among approaches that had

similar correct classification rates (e.g. longnose

sucker, rock bass: Fig. 4), illustrating that, although

the approaches misclassified the same number of

lakes, different lakes were misclassified by the various

methods.

Variable importance in predicting species distributions. Vari-

able contributions in the fish-habitat models varied

among species and among modelling approaches.

Averaged across the modelling approaches, meas-

ures of overall lake size (i.e. surface area, lake

volume, shoreline perimeter, maximum depth) were

consistently important in model predictions,

whereas the contribution of the other habitat

variables varied among the species (Table 4). For

example, lake altitude, growing-degree days and

catchment identity were the most important predic-

tors of smallmouth bass occurrence and lake size

and the presence of a piscivore contributed the

100

80

60

40

20

0

P
e
rc

e
n
ta

g
e
 o

f 
c
o
rr

e
c
t 

c
la

ss
if

ic
a
ti

o
n

Overall correct
classification Specificity Sensitivity

L
R
A

L
D

A
C
FT

A
N

N
L
R
A

L
D

A
C
FT

A
N

N
L
R
A

L
D

A
C
FT

A
N

N

Modeling approach

Fig. 3 Mean (and one standard deviation) for overall correct

classification, specificity and sensitivity based on all 27 fish-

habitat models developed using logistic regression (white),

discriminant analysis (light grey), classification trees (black) and

artificial neural networks (dark grey).

Modelling species distributions 1985

� 2002 Blackwell Science Ltd, Freshwater Biology, 47, 1976–1995



most to predictions of northern redbelly dace

occurrence.

Based on ranked importance of the habitat variables

in the models of the 27 species, there were a number

of similarities and differences in the relative predict-

ive importance of the habitat variables among mod-

elling approaches. The results based on all species

showed that the modelling approaches showed close

agreement in the importance of particular variables

(e.g. shoreline perimeter, altitude), but disagreed in

the importance of others (e.g. total dissolved solids,

pH) for predicting species occurrence (Fig. 5). Overall

differences in the mean ranked importance of habitat

variables existed among all approaches, but were

most notable between linear and non-linear approa-

ches. For example, the importance of summer strati-

fication and presence of a piscivore (both

dichotomous variables) were higher for both CFT

and ANN compared with LRA and LDA.

Correlation analysis of ranked variables indicated

many differences in the importance of the habitat

variables for predicting the occurrence of each species.

Significant pair-wise differences (again not correcting

the Type I error rate for multiple comparisons)

between modelling approaches highlight which meth-

ods differed in their ranked importance of the habitat

variables in each species model (Fig. 6). For example,

the approaches exhibited marked differences in the

importance of the habitat variables for predicting the

occurrence of creek chub, northern redbelly dace and

pearl dace, whereas they were in agreement for other

species, including lake whitefish, round whitefish and

smallmouth bass. Of the 61 pair-wise differences

between approaches, 49 (80%) were between linear

and non-linear techniques, a value substantially

greater than the expected 67%. Similar to the results

from the McNemar’s tests, ANN participated in the

greatest number of pair-wise differences (41) com-

Table 3 Summary of performance metrics of species-habitat models. Reported values are percentage correctly classified (CC),

specificity (SP: ability to correctly predict species absence) and sensitivity (SN: ability to correctly predict species presence). Predictions

significantly different from random (based on j statistic) are indicated in bold (P < 0.05). Species codes are defined in Table 1

Species

Logistic regression Discriminant analysis Classification tree Neural network

CC SP SN CC SP SN CC SP SN CC SP SN

BCS 94 100 0 94 99 6 94 100 0 99 100 75

BNS 73 84 59 72 81 59 69 95 31 78 71 88

BSB 74 93 23 75 94 24 73 100 0 80 80 79

BT 79 24 95 79 24 96 79 23 96 83 27 100

BB 66 70 61 66 71 61 66 79 52 64 98 25

B 79 91 53 78 89 55 76 96 30 87 86 88

C 84 94 46 84 95 44 79 100 0 91 97 66

CC 76 44 90 76 43 91 74 47 87 76 31 97

CS 70 63 75 72 66 76 76 76 75 77 63 89

F 90 99 16 89 98 16 89 100 0 98 100 78

FSD 85 100 2 86 100 7 85 100 0 93 99 56

GS 66 83 41 66 83 40 66 89 32 71 61 85

ID 85 96 43 84 95 40 80 100 0 87 93 67

LC 86 99 17 85 99 13 84 100 0 84 100 0

LT 80 76 83 81 77 84 76 86 67 83 69 95

LW 86 99 5 86 98 5 86 100 0 93 97 67

LS 85 97 28 84 96 28 82 100 0 88 100 40

NRD 63 50 74 63 48 74 63 51 73 69 42 92

PD 68 79 52 67 79 52 66 88 35 67 98 22

PKS 71 36 89 71 37 90 72 43 87 72 21 99

RB 94 100 51 91 96 51 92 99 43 97 100 77

RW 89 98 7 90 99 10 90 100 0 93 95 73

SMB 83 96 33 82 96 31 79 100 0 91 96 74

SL 92 100 0 92 100 0 92 100 0 94 100 18

T-P 91 99 19 92 99 30 91 100 0 95 98 63

WS 85 30 96 86 34 96 89 47 97 88 32 100

YP 74 30 93 74 28 93 71 0 100 76 16 100
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pared with the other approaches (LRA: 27; LDA: 33;

and CFT: 21).

Concordance between patterns in species predictability and

habitat variable importance. Differences in species pre-

dictability and variable importance among the model-

ling approaches resulted in four general relationships

(Figs 4 & 6). First, several species exhibited minimal

differences in patterns of species predictability and

variable importance among the approaches (e.g. brown

bullhead, round whitefish, yellow perch). Secondly, a

number of species (e.g. burbot, rock bass) exhibited

significant differences both in patterns of misclassifi-

cation and in the importance of the variables for making

model predictions. Thirdly, the predictability of some

species (e.g. cisco, creek chub, longnose sucker) did not

differ among the approaches, yet the importance of the

habitat variables differed significantly. Fourthly, there

were also a number of species where the modelling

approaches exhibited different correct classification

rates, but the importance of the variables in the models

were similar (e.g. finescale dace, smallmouth bass).

Comparison of modelling approaches: simulated data

Results from the Monte Carlo simulations show that

for linear species response curves, all modelling

approaches exhibited high correct classification rates

(Fig. 7). On average, CFT and ANN correctly classi-

fied 100% of the observations in all 500 simulated data

sets, whereas LRA and LDA correctly classified 97

and 92% of the cases, respectively. In contrast, the two

non-linear modelling approaches greatly out-per-

formed the linear approaches for the Gaussian or

non-linear species response curve, where CFT and

ANN had mean correct-classification rates of 89 and

98%, and LRA and LDA had mean correct-classifica-

tion rates of 52 and 49%, respectively (corresponding

to completely random predictions because the data

sets were generated to exhibit species prevalence of

50%) (Fig. 7).

Discussion

Linear and non-linear approaches to developing

predictive models should be viewed as both compet-

itive and complementary methodologies for establish-

ing quantitative linkages between species and their

environment. Although taking such a comparative

approach is favourable, the number of studies exam-

ining multiple statistical techniques for modelling

species-environment relationships is surprisingly

small (Guisan & Zimmermann, 2000). To the best of

our knowledge, our study is the first comprehensive

comparison of traditional and alternative modelling

approaches using both empirical and simulated data.

This treatment is especially timely because alternative

statistical methodologies, especially classification

trees and neural networks, have recently been

Fig. 4 Results from McNemar’s test assessing differences

among patterns of lake misclassifications using logistic regres-

sion, discriminant analysis, classification trees and artificial

neural networks. Shared shading for a species represents signi-

ficant differences in the sets of lakes in which species occurrence

was incorrectly predicted (P < 0.05). For example, blackchin

shiner was misclassified in different sets of lakes based on the

logistic regression model and the neural network.
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Fig. 5 Mean rank importance (average

importance of each habitat variable based

on all 27 species-habitat models) of the

habitat variables for predicting species

presence ⁄absence using logistic regres-

sion (white), discriminant analysis (light

grey), classification trees (black) and arti-

ficial neural networks (dark grey). Note

that standard deviations were omitted for

clarity and that the three dummy vari-

ables coding the drainage basins were

averaged to produce the single value

shown.

Table 4 Mean rank importance of the habitat variables for predicting species presence ⁄absence. Mean rank importance was

calculated by averaging the rank of each variable across the four modelling approaches. Species codes are defined in Table 1 and

variable codes are defined in Table 2. The three dummy variables coding the drainage basins (DB Code) were averaged to produce the

single value shown

Species

Habitat variables

S. Area Volume Sh. Per. Max. Dep. TDS pH Altitude GDD SS DB Code Piscivore

BCS 2.0 5.0 7.8 8.3 5.5 4.0 7.5 4.0 7.3 5.8 3.0

BNS 4.5 5.3 2.5 4.0 9.8 11.8 10.8 10.3 9.8 5.4 6.0

BSB 1.8 2.5 4.5 7.3 6.3 7.8 5.5 2.5 7.5 5.8 8.5

BT 3.0 3.8 5.8 5.0 12.0 9.0 10.5 5.3 3.5 6.7 –

BB 3.0 6.8 2.8 4.3 10.0 9.0 9.0 11.3 9.0 4.3 –

B 3.8 3.5 3.5 5.3 6.3 9.0 8.8 5.8 8.8 7.7 –

C 1.0 2.0 5.3 4.8 7.5 6.8 4.3 4.8 7.8 5.8 –

CC 3.0 3.3 3.5 7.0 10.5 10.0 6.0 9.0 10.3 6.1 10.0

CS 2.8 4.8 2.0 7.8 5.0 8.3 10.3 10.8 11.5 7.3 5.5

F 4.0 6.5 1.5 8.8 8.0 7.8 4.5 6.0 8.3 3.2 6.8

FSD 2.0 3.3 2.5 8.0 6.0 3.8 6.3 3.5 9.3 6.6 7.3

GS 2.3 2.3 5.3 5.3 9.3 6.5 6.8 8.0 7.8 10.4 6.3

ID 2.0 5.3 4.0 5.3 4.5 7.5 8.8 6.5 6.3 4.0 9.5

LC 5.3 1.0 4.5 3.8 7.0 7.5 3.3 7.3 8.5 6.7 3.5

LT 2.3 2.8 2.3 3.3 8.8 7.8 10.3 6.0 8.8 8.5 –

LW 1.0 2.3 3.3 6.3 5.8 7.0 3.8 8.0 6.5 5.9 –

LS 1.3 1.8 4.5 6.8 4.0 8.0 7.0 8.3 6.0 4.7 –

NRD 3.0 6.3 3.8 3.0 9.8 7.3 7.5 9.8 10.0 8.8 4.0

PD 1.8 5.3 1.5 9.3 10.3 10.8 7.0 7.3 9.3 7.4 5.8

PKS 2.3 5.8 5.3 6.0 6.0 7.0 2.3 5.5 7.0 10.3 –

RB 7.5 8.0 7.3 10.5 6.3 4.0 4.0 8.0 8.0 4.5 –

RW 3.8 4.5 5.8 7.5 6.8 5.5 7.5 8.5 4.0 2.6 –

SMB 4.5 4.8 4.8 7.8 7.0 9.0 2.0 3.3 8.3 3.4 –

SL 4.8 2.3 5.0 5.8 6.5 7.0 2.3 3.8 7.3 5.7 –

T-P 2.8 3.8 5.3 6.8 5.8 8.5 4.5 8.5 4.5 4.5 7.8

WS 2.0 6.8 4.0 5.3 5.5 7.3 8.3 10.5 7.8 6.9 –

YP 1.8 7.0 3.3 5.0 1.5 4.5 5.5 6.0 5.0 7.3 –
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introduced and advocated as attractive modelling

approaches in the ecological literature (Lek et al., 1996;

De’ath & Fabricius, 2000).

Comparison of modelling approaches: predictive power

We found that average predictive performances of

LRA, LDA, CFT and ANN were similar across all

species, although differences in the directionality of

correct prediction were evident as CFT exhibited the

highest specificity and neural networks exhibited the

highest sensitivity. Furthermore, the predictability for

individual species varied greatly, emphasising that no

single linear or non-linear approach was optimal for

all species (although neural networks produced the

greatest number of statistically significant models).

Recent studies modelling species presence ⁄absence

have shown the predictive advantages of LRA (e.g.

Manel et al., 1999; Özesmi & Özesmi, 1999), LDA (e.g.

Reichard & Hamilton, 1997; Scheller et al., 1999), CFT

(e.g. Rejwan et al., 1999) and ANN (e.g. Mastrorillo

et al., 1997; Olden & Jackson, 2001) relative to their

linear or non-linear counterparts.

Where the underlying data structure and assump-

tions are met for a particular statistical method, there

is no reason to expect major differences in the

suitability between traditional and alternative tech-

niques. For example, one might expect LRA and

LDA to perform as well where linear relationships

exist, whereas CFT and ANN should prove better in

non-linear situations. Indeed, the results from our

simulation experiment support this expectation. The

CFTs and ANNs were shown to be superior to linear

approaches for nonlinearly distributed data (i.e.

Gaussian species response curves), whereas all four

Fig. 6 Results from Spearman rank correlation test assessing

differences among relative importance of the habitat variables

for predicting species presence ⁄absence using logistic regres-

sion, discriminant analysis, classification trees and artificial

neural networks. Shared shading for a species represents signi-

ficant differences between models in the importance of the

habitat variables for predicting its occurrence (P < 0.05). For

example, the ranked importance of the habitat variables in the

blackchin shiner model differed between logistic regression and

the neural network.
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approaches showed nearly identical predictive

power for the linear species response curves. The

use of simulated data to compare statistical tech-

niques is preferable because the properties of the

data are known (properties which cannot be deter-

mined, but only estimated from field data) and thus

true differences among techniques can be accurately

assessed.

However, simulation studies are not without

problems. If not designed properly, simulation stud-

ies are likely to be biased towards the success of

particular methods. For example, if all the data were

generated from two multivariate normal classes with

equal covariance matrices, LDA would perform

better than LRA (Efron, 1975). This is a good

example because the above assumption of variable

distribution was undoubtedly violated when we

sampled from our simulated data sets, which helps

explain why LRA tended to outperform LDA (this is

also supported by Press & Wilson, 1978). Further-

more, our simulated data sets are idealised species

response curves and have no error associated with

the species-habitat relationships. Although this per-

fect relationship will not be found in field data, it

was used to highlight the major differences among

the methods. However, it is important to state as the

error distribution may bias the results in favour of

particular methods depending on the individual data

set. More detailed simulation studies using a broader

variety of known data conditions are needed to more

accurately compare the traditional and alternative

statistical approaches. The results from our simula-

tion study, however, clearly show that non-linear

modelling approaches to modelling species-environ-

ment relationships should be favoured because the

non-linear approaches should perform as well as

linear methods when the data show linear relation-

ships. When the data relationships are non-linear, the

non-linear modelling approaches should provide

superior results. Consequently, although non-linear

approaches (such as the techniques used in this

study) have greater costs (e.g. computational time

and effort) associated with their use compared with

linear approaches, we recommend that such approa-

ches should be considered when modelling ecolo-

gical data given that: (1) patterns within ecological

data are commonly non-linear in nature, (2) different

model solutions (i.e. predictive power and model

parameters) may arise as a result of specific choices

of transformations and (3) achieving linearity is often

not possible.

Comparison of modelling approaches:

explanatory insight

We found that the degree of similarity in the relative

importance of the habitat variables was highly vari-

able among the modelling approaches. For more than

half of the species, little difference among ranked

variable importance was evident, indicating that all

approaches established similar quantitative relation-

ships between the habitat variables and species

occurrence (although we did not compare the direc-

tionality of the relationships). For the remaining

species, there were substantial differences in the

relative contribution of each habitat variable to pre-

dictions of species occurrence. The majority of these

differences were observed between linear and non-

linear; a finding which is not surprising given the

inherent differences between these two types of

approaches. For example, the recursive-partitioning

algorithm of CFT and the backpropagation algorithm

of ANN have a number of advantages over the

training algorithms of LRA and LDA, including their

ability to handle mixed data types, model non-linear

relationships and capture non-additive behaviour

without having to specify a priori the form of the

interactions (Breiman et al., 1984; Bishop, 1995).

Therefore, these advantages are most likely respon-

sible for the predictive and explanatory differences

between linear and non-linear approaches. For exam-

ple, for a number of species where either ANN or CFT

exhibited greater predictive power compared with the

linear approaches (e.g. brook stickleback, Iowa darter,

lake chub, pumpkinseed, white sucker), they also

exhibited differences in the relative importance of the

habitat variables for producing those predictions.

These findings follow given that CFT and ANN are

better suited to quantify non-linear relationships

between species and environmental variables and

may result in a better representation of variable

importance for predicting species occurrence. Fur-

thermore, the idea that CFT and ANN can more

readily model mixed data types is supported by the

result that two dichotomous variables (summer stra-

tification and presence of a piscivore) had greater

contributions in the CFTs and ANNs compared with

the linear approaches.
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In summary, similarities or differences in the

relative importance of the habitat variables for

predicting species occurrence corresponded generally

with similarities or differences in the classification

success of the models among the statistical approa-

ches. Specifically, when models differed in classifi-

cation success, so did the ranked importance of the

habitat variables in the models. Given the results

from the empirical and simulation components of

this study and others, we believe that non-linear

techniques provide a more flexible set of analytical

tools for modelling ecological data compared with

traditional, linear techniques, as they can model

either linear or non-linear species response curves.

Furthermore, the fact that a number of species

models showed different patterns of variable import-

ance, even when the approaches correctly predicted

the occurrence in a similar number and set of lakes,

is an important finding. This result suggests that

traditional, linear approaches to modelling species

distributions (without the inclusion of interaction

terms) are providing a different representation of the

importance of habitat factors shaping species distri-

butions relative to that provided by non-linear

approaches.

Predictability of fish species distributions:
implications for conservation and management

More effective conservation of aquatic biodiversity

will require new approaches that recognise the

protection of key local- and regional-scale proces-

ses that shape fish distributions (Angermeier &

Winston, 1999). Developments in these areas require

an increased reliance on probabilistic models and

will represent an important advancement in both

population and community ecology. Our study

shows that statistical modelling approaches exhibit

considerable promise in providing testable, predic-

tive models for fish ecology. Although the models

presented here are correlative, and thus we cannot

determine, but only imply causation, the results are

consistent with findings from many studies of

north-temperate fish populations (e.g. Jackson &

Harvey, 1989; Tonn et al., 1990; Magnuson et al.,

1998). The fact that many species were highly

predictable from measures of whole-lake habitat

features is promising, especially for species such as

smallmouth bass and rock bass, which adversely

impact littoral prey fish abundance and diversity

in north-temperate lakes (Whittier, Halliwell &

Paulsen, 1997; Findlay, Bert & Zheng, 2000; MacRae

& Jackson, 2001) and can have competitive impacts

on populations of native top predators by reducing

prey fish populations (Vander Zanden, Casselman &

Rasmussen, 1999; Jackson, 2002). Therefore, predic-

tive models can play an important role by forecast-

ing the likelihood of local establishment and spread

of non-native species and thus help set proactive

conservation priorities for preserving vulnerable

populations.

Patterns of species occurrence were found to be

related to various aspects of lake habitat. For exam-

ple, the presence ⁄absence of salmonids and burbot

(cold-water species) were best predicted with vari-

ables describing overall lake size (i.e. surface area,

shoreline perimeter, maximum depth). Surface area

and maximum depth are known to influence the

occurrence of these species (e.g. Jackson & Harvey,

1989) because these factors influence the mixing

characteristics and the thermal regime of lakes.

Furthermore, lake area and depth serve as indirect

measures of the diversity of habitats available in

lakes, which may be important to support small-

bodied, forage fish upon which these species feed.

Lake altitude and the number of growing-degree

days were the most important predictors of small-

mouth bass occurrence, a finding consistent with the

sensitive thermal requirements of this species (Shuter

& Post, 1990). Presence of a littoral-zone piscivore

had a strong contribution to predictions of lake chub

and northern redbelly dace occurrence. This result is

consistent with studies that suggest that the distribu-

tions of these species are greatly affected by

piscivory (Whittier et al., 1997; Findlay et al., 2000;

Jackson et al., 2001).

Although a thorough discussion of the potential

applications of predictive models to aquatic conser-

vation is beyond the scope of this paper, we contend

that exploring alternative measures of model per-

formance and the use of multiple statistical approa-

ches will play critical roles in determining the

potential utility of predictive models of species

distributions. Conventionally, the predictive abilities

of species distribution models are assessed from

overall classification rates alone. However, we show

that by partitioning the predictive performance of

the models into measures such as sensitivity and
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specificity, we can assess more readily the strengths

and weaknesses of the models and better evaluate

their applicability. For instance, we found that

although the overall correct-classification rates for

some species were similar, levels of specificity and

sensitivity were often quite different. Examining

alternative measures of prediction success can pro-

vide more accurate comparisons among different

modelling approaches (e.g. Manel et al., 1999) and

among species. Alternative metrics can also provide

additional knowledge into the factors shaping spe-

cies occurrence, as well as provide important insight

into the importance and causes of model misclassi-

fications, ultimately leading to the development of

more robust predictive models. Although tradition-

ally ignored by ecologists, the consideration of

model sensitivity and specificity is important as

they may impose limitations on the success of

predictive models, particularly when used in

applied contexts. For example, low model sensitivity

for rare species implies that it will be more difficult

to predict the occurrence of organisms whose con-

servation and management may be the most critical.

This finding has great importance in developing

models for guiding searches for populations in

previously unsampled areas and for indicating site

suitability for the reintroduction of rare species (e.g.

Hill & Keddy, 1992; Wiser et al., 1998) because the

predictive ability of the models will be limited. Low

model specificity could limit our ability to monitor

and predict local extinction events caused by habitat

modification, as well as reduce our confidence in

drawing inferences from observed absences of spe-

cies from sites containing suitable habitat conditions

(e.g. indirect evidence for dispersal, predation, com-

petition).

Given that most data sets are expensive to collect

both in terms of time and money, we believe that

more effort should be spent in choosing and compar-

ing different statistical methods that best suit the

particular questions of interest and characteristics of

the data at hand. By employing parallel modelling

approaches with the same set of data and focusing on

comparing multiple metrics of predictive perform-

ance, researchers can begin to choose predictive

models that not only provide the greatest predictive

power, but also those models that best fit the

proposed application (e.g. maximising sensitivity for

predicting potential sites for species re-introduction).

Such advances will provide more statistically and

biologically powerful predictions for applied aquatic

conservation.
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models? Écoscience, 7, 501–510.

Olden J.D. & Jackson D.A. (2001) Fish–habitat relation-

ships in lakes: gaining predictive and explanatory

insight using artificial neural networks. Transactions of

the American Fisheries Society, 130, 878–897.

Olden J.D. & Jackson D.A. (2002) Illuminating the ‘black

box’: a randomization approach for understanding

variable contributions in artificial neural networks.

Ecological Modelling, 154, 135–150.

Orians G.H. (1980) Micro and macro in ecological theory.

Bioscience, 30, 79.
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