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Abstract.—The prediction of species distributionsis a
primary goal in the study, conservation, and manage-
ment of fisheries resources. Statistical models relating
patterns of species presence or absence to multiscale
habitat variables play an important role in this regard.
Researchers, however, have paid little attention to how
improper model validation and chance predictions can
result in unfounded confidence in the performance and
utility of such models. Using simulated and empirical
data for 40 lake and stream fish species, we demonstrate
that the commonly employed resubstitution approach to
model validation (in which the same data are used for
both model construction and prediction) produces highly
biased estimates of correct classification rates and con-
sequently an inaccurate perception of true model per-
formance. In contrast, ajackknife approach to validation
resulted in relatively unbiased estimates of model per-
formance. The estimated rates of model correct classi-
fication are also shown to be substantially influenced by
species prevalence (i.e., the proportion of sites at which
a species is present), and often result in poorly perform-
ing models being viewed as powerful. We use simulated
data to show how the expected frequency of chance pre-
dictions from modelsis a function of species prevalence
and sample size. Finally, we use empirical data to il-
lustrate a randomization approach for assessing whether
the performances of the fish habitat models are statis-
tically greater than expectations based on chance pre-
dictions. In summary, we urge researchers to employ
proper and defensible methodologies for model vali-
dation and prediction assessment; failing to do so will
only add to the accumulating number of published spe-
cies habitat models in the fisheries literature that are of
limited use and reliability.

Knowledge of the current and future status of
the biological diversity and integrity of lakes and
streams is of paramount importance (Hughes and
Noss 1992; Harig and Bain 1998; Hawkins et al.
2000). Recent attention has focused on the mod-
ification and loss of aquatic habitats as primary
factors threatening the conservation of fish pop-
ulations and communities (Williams et al. 1989;
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Richter et al. 1997). Consequently, efforts to un-
derstand the link between local and regional hab-
itat factors and habitat use by fish have become
increasingly important and today represent a cen-
tral avenue of research (Jackson et al. 2001). Sta-
tistical models play an important rolein thisregard
not only by contributing to our understanding of
fish habitat relationships but also by providing a
framework from which spatial and temporal pat-
terns in species presence or absence can be pre-
dicted. Consequently, species habitat models can
contribute significantly to the management and
conservation of fish populations and communities.
For example, model predictions can be used to (1)
estimate habitat suitability, (2) forecast the effects
of habitat change due to altered land-use patterns
(Oberdorff et al. 2001) and climate warming (Ste-
fan et al. 2001), (3) establish potential locations
for species reintroduction (Evans and Olver 1995),
(4) predict the likelihood of invasion of exotic spe-
cies (Peterson and Vieglais 2001), and (5) predict
““hotspots’ of species persistence for the conser-
vation of biodiversity (Williams and Araujo 2000).

Although numerous modeling approaches are
available for quantifying species habitat relation-
ships (see Guisan and Zimmermann 2000 for a
recent review), there is a generally held notion
among researchers that once amodel has been con-
structed and predictions have been produced (re-
gardless of the statistical approach used), the mod-
eling process is complete. This view is further re-
enforced by the automated nature of statistical
modeling procedures in software packages, but,
unfortunately, it is neither accurate nor suitable.
Rather, proper model validation and the assess-
ment of model predictions are two critical issues
that must be addressed in order to accurately eval-
uate model performance and future applicability.
Model validation refers to the application of a
model, the generation of predictions, and the quan-
tification of predictive performance (e.g., the cor-
rect classification rate for predicting species pres-
ence or absence). Validation is an important step
in the modeling process because it quantifies our
confidence in the predictions produced from future
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applications of the model. After proper model val-
idation, it is critical to assess whether the predic-
tions produced by the model differ from what
would be expected based on chance alone. This
assessment is another important step in the mod-
eling process because models producing random
predictions are neither helpful nor useful. Al-
though the validation and assessment of model
predictions are two key considerations when de-
veloping species habitat models, these issues re-
ceive little or no attention by fisheries researchers
and researchersin general (see Manel et al. 2001),
and therefore the seriousness of their consequenc-
es are not appreciated. To address this concern, we
use both simulated and empirical data to demon-
strate the potential problems (and subsequent im-
plications) of improper validation and chance pre-
dictions as they effect the development and inter-
pretation of species presence or absence models.
We hope that by presenting this study and high-
lighting the magnitude and consequences of these
problems, we can help ensure that fisheries biol-
ogists and managers avoid them in the future.

Model Validation

Although logic dictates that a model has little
merit if its predictions are not accurately validated
with independent data, aquatic researchers com-
monly ignore this consideration in their research
(Verbyla and Litaitis 1989; Olden and Jackson
2000). The traditional approach to model valida-
tion uses the same data both to construct the model
and to estimate its predictive performance (known
as the resubstitution estimate of the correct clas-
sification rate; Fielding and Bell 1997). Statisti-
cians have long recognized that this approach leads
to a biased estimate of model performance because
the model has been optimized to deal with the
unique characteristics and ‘‘noise’ in the data set,
and therefore has lost predictive generality beyond
the original data (e.g., Efron 1986; Chatfield
1995). To obtain amore realistic estimate of model
performance, one must validate the model with
data that are independent of the data used to es-
timate the model’s parameters. Cross-validation is
aclass of approaches that accomplish this goal and
thus provides a more appropriate method for es-
timating the correct classification rates (i.e., the
correct prediction of species presence or absence)
of statistical models. Two types of cross-validation
approaches, data splitting and jackknife validation,
have been shown to be less biased than a resub-
stitution approach (Efron 1986; Olden and Jackson
2000). The jackknife method excludes one obser-
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vation, constructs the model with the remaining n
— 1 observations, and then predicts the response
of the excluded observation using this model. The
procedure is repeated n times so that each obser-
vation, in turn, is excluded in model construction
and its response is predicted.

Given the importance of obtaining an accurate
representation of model predictive performance, it
is surprising that researchers predominantly use
the resubstitution approach to validate their mod-
els (Manel et al. 2001). Motivated by this obser-
vation, we seek to demonstrate the extent to which
resubstitution validation produces biased estimates
of model predictive performance. Weillustratethis
bias by developing logistic regression models us-
ing simulated and empirical data for fish species
occurrence in the temperate lakes and streams of
Canada.

Smulated Data

Eleven prevalence classes of data were exam-
ined. The level of species prevalence (i.e., the pro-
portion of sites at which a species is present) dif-
fered among classes and ranged from 0% to 100%
(with incremental increases of 10%); random as-
sociations between the dependent and independent
variables were maintained. For each prevalence
class we simulated 10,000 data sets, each contain-
ing 50 observations of one dependent and four
independent variables (all variables exhibited ran-
dom, or uncorrelated, relationships with each oth-
er). Independent variables were generated by ran-
dom sampling from a uniform distribution, al-
though comparable results were obtained using
normally distributed random data. The following
Monte Carlo experiment was then repeated for
each of the 10,000 data sets: (1) logistic regression
analysis was conducted to model the relationship
between the dependent and independent data; (2)
the resubstitution and jackknife estimate of correct
classification (%) was calculated (i.e., the percent
of observations, either present or absent, that were
correctly predicted); and (3) the difference be-
tween the resubstitution and jackknife correct clas-
sification rates and the ‘‘random’ classification
rate (related to species preval ence; see Chance Pre-
dictions below) was calculated. The mean differ-
ence based on the 10,000 data sets for each prev-
alence class provides a quantitative measure of the
bias associated with resubstitution and jackknife
model validation approaches because the true re-
lationship between the dependent and independent
variables is known (i.e., the correct classification
rates expected from random data). Figure 1 shows
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Ficure 1.—Results from the Monte Carlo experiment
showing biases in the resubstitution and jackknife es-
timates of correct classification (%). The term ‘‘bias”
refers to the difference between estimated correct clas-
sification rates and estimates based on data exhibiting
random associations between the dependent and inde-
pendent variables. Mean differences are based on 10,000
simulated data sets and are reported for different classes
of species prevalence.

the overestimation of the correct classification
rates based on the resubstitution method, with bi-
ases approaching 15% (i.e., the resubstitution
model reports that it can correctly classify 15%
more of the observations than is truly the case).
Note that the degree of bias associated with the
resubstitution method increases from either direc-
tion as species preval ence approaches 50%. In con-
trast, the jackknife validation approach never over-
estimates the correct classification rate and, in fact,
produced slight underestimations (with a maxi-
mum of less than 4%). This finding agrees with
the findings of other simulation studies that have
shown the jackknife approach to be a relatively
unbiased approach (Olden and Jackson 2000).

Empirical Data

We constructed fish habitat models using logis-
tic regression analysis for two data sets—one in-
volving 89 lakes in the Petawawa River basin of
Ontario, Canada, and one involving 48 streams in
the Blackwater River basin of British Columbia,
Canada. The Petawawa River data set consisted of
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26 fish species (hereafter called the Petawawa spe-
cies) and the following six whole-lake habitat var-
iables: lake area, maximum depth, shoreline pe-
rimeter, lake elevation, total dissolved solids, and
pH (see Crossman and Mandrak 1992; Olden
2000). The Blackwater River data set consisted of
14 species (hereafter called the Blackwater spe-
cies) and the following four basin-scale habitat
variables: drainage area, watershed gradient, reach
gradient, and elevation (see Porter et al. 2000). We
assessed correct classification rates for both data
sets using the resubstitution and jackknife meth-
ods.

Figure 2 shows the jackknife estimates versus
the resubstitution estimates of correct classifica-
tion rate based on the fish habitat models for the
Petawawa and Blackwater species. The vertical
length of the residual from each point (represent-
ing a species) to the diagonal 1:1 line indicates the
magnitude of the difference between the resubsti-
tution and the jackknife estimate of correct clas-
sification and, therefore, the magnitude of biasin
the resubstitution approach relative to the more
accurate jackknife estimates. We use the term
““bias’” to describe the known overestimation of
the resubstitution correct classification rate com-
pared with the jackknife estimate based on the pre-
vious simulation experiments. For the Petawawa
models, correct classification rates were inflated
by over 5% on average (ranging from 1.1% to
12.3%), with pearl dace (12.3%), yellow perch
(9%) and northern redbelly dace (9%) showing the
greatest biases (see Figure 2 for data and scientific
names). Similarly, average correct classification
rates for the Blackwater models were inflated by
6% (ranging from 0% to 10.5%) based on the re-
substitution approach, where the greatest differ-
ences (i.e., correct classification biases exceeding
10%) were observed for bridgelip sucker, leopard
dace, and longnose dace (Figure 2). The insets of
Figure 2 illustrate the frequencies of resubstitution
bias for each data set and show, for example, that
the majority of Petawawa models exhibited a cor-
rect classification bias between 3% and 7%, where-
as the bias associated with the Blackwater models
ranged uniformly between 1% and 10%. The two
empirical examples show that the resubstitution
estimates of fish habitat model performance would
be interpreted to be substantially better than they
really are, ultimately resulting in undue confidence
in the overall quality and applicability of the mod-
els. In a similar study of 52 lakes, we found that
the resubstitution estimate of the correlation co-
efficient between the predicted and actual values
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Ficure 2.—The relationship between jackknife and resubstitution estimates of correct classification for 26 fish
species in Petawawa River drainage, Ontario, and 14 fish species in Blackwater River drainage, British Columbia.
Petawawa species codes refer to burbot Lota lota (B), brown bullhead Ameiurus nebulosus (BB), blackchin shiner
Notropis heterodon (BCS), blacknose shiner N. heterolepis (BNS), brook stickleback Culaea inconstans (BSB),
brook trout Salvelinus fontinalis (BT), cisco Coregonusartedi (C), creek chub Semotilisatromaculatus (CC), common
shiner Luxilis cornutus (CS), fallfish Semotilus corporalis (F), finescale dace Phoxinus neogaeus (FSD), golden
shiner Notemigonus crysoleucas (GS), lowa darter Etheostoma exile (ID), lake chub Couesius plumbeus (LC),
longnose sucker Catostomus catostomus (LNS), lake trout Salvelinus namaycush (LT), lake whitefish Coregonus
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of speciesrichness was 0.77, afigure considerably
greater than the more accurate level of 0.52 that
was estimated using a jackknife approach (Olden
and Jackson 2000).

Chance Predictions

Are model predictions better than those that can
be obtained by chance? A simple answer might
involve generating chance predictions by flipping
a coin to decide whether a species is predicted to
be present or absent at a site, resulting in a 50%
correct classification rate. However, this naive ap-
proach isinappropriate because chance predictions
are actually related to species prevalence (i.e., the
frequency of species occurrence in the data set).
For example, if one wished to predict the occur-
rence of a species at a particular site and the spe-
cies was present in 80% of the sites surveyed, the
probability of chance correct classification is not
50%, but 80%. That is, under the null hypothesis
that a predictive model performs no better than
random assignment, the number of correctly clas-
sified cases approximates a binomial distribution,
with chance correct classification probability equal
to 0.5 + |(0.5 — species prevalence)|. This results
in a V-shaped response of percent correct classi-
fication to increasing levels of species prevalence.
As an example, a trivial model for a rare species
(e.qg., 5% prevalence in the data set) would predict
the species to be absent from all sites, resulting in
a 95% correct classification rate. Similarly, acom-
mon species found at 95% of the sites would be
predicted to occur at all sites, and, again, the model
would correctly classify 95% of the sites. Finally,
using such atrivial model for a species occurring
at 50% of the sites would result in the maximum
error rate, producing correct classifications for
50% of the sites. In this study we use simulated
and empirical data to show how the relationship
between chance predictions and species preva-
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lence can erroneously enhance our perception of
model predictive performance.

Smulated Data

Nineteen prevalence classes of data were ex-
amined. The level of species prevalence differed
among classes and ranged from 5% to 95% (with
incremental increases of 5%); random associations
between the dependent and independent variables
were maintained. For each prevalence class we
simulated 10,000 data sets for each of three sample
sizes (30, 60, and 90 observations) of one depen-
dent and four independent variables (all variables
exhibited random, or uncorrelated relationships
with each other). Independent variables were gen-
erated by random sampling from a uniform dis-
tribution, although comparable results were ob-
tained using normally distributed random data.
The following Monte Carlo experiment was then
repeated for each of the 10,000 data sets for each
sample size: (1) logistic regression analysis was
conducted to model the relationship between the
dependent and independent data; and (2) the jack-
knife estimate of the correct classification rate (%)
was calculated. Based on the 10,000 data sets for
each prevalence class and for each sample size,
95% confidence intervals of the jackknife esti-
mates of percent correct classification were cal-
culated. Figure 3 shows the 95% confidence in-
tervals for the three sample sizes across the entire
spectrum of species prevalence and illustrates the
expected range of correct classification rates from
a model built using completely random data. It is
important to note that mean correct classification
rates due to chance show close agreement with the
formula defined previously, and that the range of
correct classification rates decreases with increas-
ing sample size as well as with movement away
from a species prevalence of 50% (Figure 3). Re-
sults from the simulation study highlight the over-

—

clupeaformis (LW), northern redbelly dace Phoxinus eos (NRD), pearl dace Margariscus margarita (PD), pump-
kinseed Lepomis gibbosus (PKS), rock bass Ambloplites rupestris (RB), round whitefish Prosopium cylindraceum
(RW), smallmouth bass Micropterus dolomieu (SMB), trout-perch Percopsis omiscomaycus (TP), white sucker
Catostomus commersoni (WS) and yellow perch Perca flavescens (Y P). Blackwater species codes refer to bridgelip
sucker Catostomus columbianus (BS), burbot (B), chinook salmon Oncorhynchus tshawytscha (CS), chiselmouth
Acrocheilus alutaceus (C), largescale sucker Catostomus machrocheilus (LSS), leopard dace Rhinichthys falcatus
(LD), longnose dace R. cataractae (LND), longnose sucker (LNS), mountain whitefish Prosopiumwilliamsoni (MW),
northern pikeminnow (formerly northern squawfish) Ptychocheilus oregonensis (NS), peamouth Mylocheiluscaurinus
(PC), prickly sculpin Cottus asper (PS), rainbow trout O. mykiss (RT), and redside shiner Richardsonius balteatus
(RS). Vertical distance from each species to 1:1 line represents the expected model performance bias resulting

from using a resubstitution approach to model validation.
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Ficure 3.—Results from the Monte Carlo experiment
showing the relationship between species prevalence
(i.e., frequency of species occurrence) and chance cor-
rect classification based on data exhibiting random as-
sociations between the dependent and independent var-
iables. Results are based on 10,000 simulated data sets
and illustrate the 95% confidence intervals for 3 sample
sizes (n = 30, 60, and 90).

whelming importance of testing model predictions

against chance predictions produced solely by the
artifact of species prevalence in the data.

Empirical Data

Given the inherent dependence of the correct
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portant to either quantify model performance with
ameasure that isinvariant to the effects of species
prevalence, or test the significance of the classi-
fication rate against expectations based on chance.
In thefirst case, there exist a number of alternative
measures that quantify model performance, in-
cluding the odds ratio, the normalized mutual in-
formation statistic, Huberty’s normal statistic, Co-
hen’s kappa, and the area under the curve from
receiver operating characteristics plots (see Field-
ing and Bell 1997 for a review). Recently, Manel
et a. (2001) provided a comprehensive compari-
son of a number of these measures using an ex-
tensive empirical data set, finding Cohen’s kappa
to be the most robust measure as it was only mar-
ginally affected by prevalence. We have employed
the second case approach by using arandomization
method to assess whether the correct classification
rates of the Blackwater River and Petawawa River
fish habitat models differed significantly from
chance (e.g., Solow 1990). A null distribution of
correct classification rates (CCRs) for each species
was generated by randomly permuting the original
observations of occurrences among the lake or
stream sites, conducting logistic regression anal-
ysis using the randomized species occurrence and
the original independent variables, and calculating
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Ficure 4.—Results from the randomization test for assessing model predictive performance. Whisker plots show
the 95% confidence intervals based on 999 randomizations of the data set. Observed correct classification rates
are represented by circles (species from the Petawawa River drainage) and squares (species from the Blackwater
River drainage), where solid symbols represent fish habitat models whose predictions statistically differ from chance
(P < 0.05) and open symbols represent nonsignificant predictions.
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the jackknifed CCR. This procedure was repeated
999 times and the significance level of the pre-
dictive model was calculated as the proportion of
random CCRs (including the observed CCR) that
were larger than or equal to the observed CCR.
Figure 4 shows the 95% confidence intervals of
the correct classification rates based on the ran-
domized correct classification rates and the ob-
served correct classification rate for the Petawawa
River and Blackwater River species, which are
plotted as afunction of their prevalence in the data
sets. Observed correct classification rates located
above the 95% confidence interval represent fish
habitat models whose predictions differ statisti-
cally from random. The results from the random-
ization test show that for over half the species
modeled (18 out of 26 Petawawa species and 5 out
of the 14 Blackwater species), the classification
success for predicting species presence or absence
was not significantly different from random (Fig-
ure 4). For example, the two least prevalent spe-
cies, blackchin shiner and rock bass, were pre-
dicted correctly in 94% and 85% of the lakes in
the Petawawa River drainage, respectively; yet
these values were no better than expected due to
chance (i.e., 94% and 91%, respectively). Simi-
larly, the most preval ent species, white sucker, had
an impressive correct classification of 90%; how-
ever, this model failed to produce predictions
greater than the 92% expected by chance. Close
agreement can also be noted between the chance
95% confidence intervals of correct classifications
and species prevalence from Figure 4 and the pat-
tern shown in Figure 3.

Consequences of Chance Predictions

Our results show that amodel may produce very
high correct classification rates in extreme situa-
tions, for instance where species prevalenceisvery
low (<10%) or very high (>90%), but its im-
provement over chance may be slight. In such cas-
es, the random classification of species as being
present or absent based on its a priori probability
of occurrence (i.e., species prevalence) provides
comparable rates of correct classification relative
to the predictions generated by the logistic models.
The effect of species prevalence on the estimated
classification success of a model is unavoidable
because, with increased frequency of occurrence,
thereisagreater probability of correctly predicting
the species to be present. As a result, one should
expect increasing model sensitivity (the ability to
correctly predict species presence) and decreasing
model specificity (the ability to correctly predict
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species absence) to occur with increasing species
prevalence, and that overall classification success
should be highest for rare and common species
and decrease as species prevalence approaches
50% (see Manel et al. 1999; Olden and Jackson
2001). Although high correct classification rates
might at first appear attractive and suggest useful
models, we show that chance predictions can lead
to false confidence in these models for predicting
species distributions. For this reason, it is clearly
necessary that the classification rates of predictive
models be tested against expectations based on
chance prior to the interpretation and future ap-
plication of such models.

Conclusion

Our primary goal was to enhance the awareness
of fisheries biologists to the dangers of commonly
employed model validation techniques and the
phenomena of chance predictions in statistical
modeling. Researchers should be aware of the
magnitude of the biases that are associated with
resubstitution estimates of model predictive per-
formance as they can result in an overly optimistic
representation of the model’s ability and can lead
to potentially unwarranted and misleading conclu-
sions. It isimportant to note that although we used
only logistic regression in this study, our findings
are relevant for other statistical approaches such
aslinear or multiplelinear regression, discriminant
analysis, classification trees, and artificial neural
networks, which, in some cases, may exhibit even
greater model performance biases (J. Olden, un-
published data). After model predictions are pro-
duced, it is necessary that they be tested against
predictions based on chance alone in addition to
subjecting them to proper validation. In this study,
we demonstrated the effect of species prevalence
on rates of chance predictions, and the influence
of this relationship on our confidence, or lack
thereof, in model predictions.

In conclusion, although predictive models serve
as valuable tools in the fisheries sciences, re-
searchers must increase their emphasis on the
proper validation and assessment of predictions
generated from these models. The failure to prop-
erly address these issues will only weaken the po-
tential utility of such models and ultimately will
result in models of limited usefulness. To enable
the confident application of predictive models in
the management and conservation of our fisheries
resources, we appeal to researchers to employ
proper and defensible methodologies for model
validation and assessment.
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