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Abstract.—Understanding and predicting the impacts of habitat modification and loss on fish
populations are among the main challenges confronting fisheries biologists in the new millennium.
Statistical models play an important role in this regard, providing a means to quantify how en-
vironmental conditions shape contemporary patterns in fish populations and communities and
formulating this knowledge in a framework where future patterns can be predicted. Developing
fish–habitat models by traditional statistical approaches is problematic because species often exhibit
complex, nonlinear responses to environmental conditions and biotic interactions. We demonstrate
the value of a robust statistical technique, artificial neural networks, relative to more traditional
regression techniques for modeling such complexities in fish–habitat relationships. Using artificial
neural networks, we provide both explanatory and predictive insight into the whole-lake and within-
lake habitat factors shaping species occurrence and abundance in lakes from southcentral Ontario,
Canada. The results show that species presence or absence is highly predictable based on whole-
lake measures of habitat, and that these fish–habitat models show good generality in predicting
occurrence in other lakes from an adjacent drainage. Detailed evaluation of these models shows
that partitioning the predictive performance of the models into measures such as sensitivity (ability
to predict species presence) and specificity (ability to predict species absence) allows assessment
of the strengths, weaknesses, and applicability of the models more readily. We show that artificial
neural networks are a useful approach for examining the interactive effects of habitat and biotic
factors that shape species occurrence, abundance, and spatial occupancy within lakes. Finally,
using simulated and empirical examples, we show that artificial neural networks provide greater
predictive power than do traditional regression approaches for modeling species occurrence and
abundance.

In recent years several broad-scale studies have
identified modification and loss of aquatic habitat
as primary factors threatening the conservation of
freshwater fish populations and communities (Wil-
liams et al. 1989; Allen and Flecker 1993; Richter
et al. 1997). Consequently, efforts to understand
the linkage between habitat, its use by fish, and
associated productivity have become increasingly
important and currently are central issues in the
aquatic sciences (Hughes and Noss 1992; Harig
and Bain 1998). Anthropogenic activity has altered
many components of riparian areas and nearshore
habitats (Jennings et al. 1999). Modifications in-
clude changes in the composition and density of
macrophytes (Bryan and Scarnecchia 1992), quan-
tity and diversity of shoreline habitat such as
woody material (Christensen et al. 1996), and sub-
strate composition (Beauchamp et al. 1994; Jen-
nings et al. 1996). Alterations to littoral-zone hab-
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itat can have dramatic and persistent impacts on
fish assemblages because this habitat ultimately
provides the template on which lentic ecosystems
are organized (Jackson and Harvey 1989; Tonn et
al. 1990; Hinch et al. 1991; Jackson et al. 2001;
Olden et al. 2001).

The ability to evaluate the effects of habitat
change and other human impacts on fish popula-
tions requires extensive surveying of the fish pop-
ulations before and after the change occurs (Lester
et al. 1996). However, pollution, shoreline devel-
opment, and other forms of habitat degradation
often are not single events for which timing and
magnitude are controllable. Such events common-
ly impose cumulative impacts on fish populations.
Indeed, individual effects on populations may be
so small relative to natural population variability
that statistically significant effects might be de-
tectable only after many years of study. Predictive
fish–habitat models may play a useful role in this
regard by providing the ability to forecast both
small- and large-scale effects of habitat modifi-
cation on fish populations and communities. For
instance, fish–habitat models could provide re-
source managers with the ability to predict species
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occurrence and abundance at different spatial
scales by using whole-lake and within-lake mea-
sures of habitat. Ultimately, predictive models
would enhance managers’ abilities to predict the
temporal and spatial scales at which habitat can
be changed while minimizing the impact to lake
fish populations.

Although fish–habitat models play an important
role in fisheries ecology and management, devel-
oping useful models may be difficult because spe-
cies exhibit complex, nonlinear responses to en-
vironmental and biotic factors. Multiple linear re-
gression and linear discriminant analyses remain
the most frequently used techniques for modeling
fish–habitat relationships, although our confidence
in these methods is often limited by the inability
to meet some of the assumptions of the model,
such as appropriate error structure of the variables,
independence of variables, and model linearity
(James and McCulloch 1990). The last assumption
is particularly susceptible to violation when eco-
logical data are examined. Data transformations of
variables can improve the results of traditional ap-
proaches, but often these are only partially suc-
cessful (e.g., Lek et al. 1996; Guégan et al. 1998;
Wally and Fontama 1998). Furthermore, the choice
of transformation may influence the results and
thus bias our interpretation of ecological relation-
ships.

Artificial neural networks (ANNs) are a prom-
ising alternative to traditional statistical approach-
es, providing a powerful, flexible learning tech-
nique for uncovering nonlinear patterns in data.
Applications of ANNs are diverse in the literature,
ranging from social sciences to chemistry, and re-
cently have received more attention in the ecolog-
ical sciences for their ability to solve complex
pattern-recognition problems (Colasanti 1991; Ed-
wards and Morse 1995; Lek et al. 1996). ANNs
can have advantages over traditional methods
when applied to systems that may be poorly de-
fined and understood and to situations where input
data are incomplete or ambiguous by nature. Fur-
thermore, unlike the more commonly used meth-
ods, neural networks are not dependent on partic-
ular functional relationships, make no assumptions
regarding the distributional properties of the data,
and require no a priori understanding of variable
relationships. This independence makes ANNs a
potentially powerful modeling tool for exploring
complex, nonlinear biological problems, such as
the relationships believed to exist between fish and
their surrounding environment.

The primary objectives of our study are to high-

light the value of ANNs for modeling ecological
relationships and to illustrate their ability to pro-
vide insight into understanding and predicting re-
lationships between fish populations and the en-
vironment. Before addressing these objectives,
however, we provide a simple methodological
comparison between ANNs and traditional regres-
sion-based approaches in predicting simulated pat-
terns of species presence/absence and abundance
relative to an environmental gradient. The results
from this comparison demonstrate the capabilities
of these various approaches under deterministic or
known conditions. We then use field data to model
the relationships between lakewide habitat attri-
butes and species occurrence in a set of temperate
lakes located in southcentral Ontario, Canada.
More specifically, we determine the predictability
of species presence/absence on the basis of readily
available, whole-lake habitat factors (e.g., surface
area, maximum depth, elevation) and go beyond
conventional model evaluations by estimating op-
timal decision thresholds for prediction to maxi-
mize measures of classification success, sensitiv-
ity, and specificity of the models. Next, we test
the performance of these models for predicting
species occurrences from a second set of lakes in
an adjacent drainage, providing an assessment of
the transferability or generality of the species–hab-
itat models. Given that species abundance may be
a more sensitive response variable for studying
fish–habitat relationships (but see Jackson and
Harvey 1997), we model associations between
within-lake species abundances and nearshore
habitat features (e.g., macrophyte cover, substrate
types, site exposure) for several littoral-zone fish-
es. Finally, we empirically compare the predictive
performance of the neural networks to that of fish–
habitat models developed by using logistic re-
gression for species occurrence and multiple re-
gression for species abundance. We show that
ANNs rovide powerful predictive models and shed
important insight into the individual and interac-
tive relationships between fish and their environ-
ment at local and regional scales.

Artificial Neural Networks

The ability of the human brain to perform com-
plex tasks, such as pattern recognition, has moti-
vated a large body of research exploring the com-
putational capabilities of highly connected net-
works of relatively simple elements, ANNs. Al-
though ANNs were initially developed to better
understand how the mammalian brain functions,
researchers in a variety of scientific disciplines
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FIGURE 1.—A one-hidden-layer, feed-forward neural
network design.

have become more interested in the potential math-
ematical utility of neural network algorithms for
addressing an array of problems. For example,
ANNs have shown great promise for solving com-
plex pattern-recognition problems and for devel-
oping prediction or classification rules in the bi-
ological sciences (e.g., Colasanti 1991; Edwards
and Morse 1995; Lek et al. 1996; Lek and Guégan
1999). Previous studies using ANNs are too nu-
merous to list here; however, their use in fisheries
applications has been limited and includes mod-
eling fish species richness (Guégan et al. 1998),
presence/absence (Mastrorillo et al. 1997), abun-
dance (Lek et al. 1996; Brosse et al. 1999), and
production (Chen and Ware 1999).

Although many types of ANNs exist (see Bishop
1995; Ripley 1996), here we describe the type used
most frequently; the one-hidden-layer, feed-
forward neural network trained by the back-prop-
agation algorithm (Rumelhart et al. 1986). These
extremely popular neural networks have been used
in the biological literature because they are con-
sidered to be universal approximators of any con-
tinuous function (Cybenko 1989; Funahashi 1989;
Hornick et al. 1989). Furthermore, single hidden-
layer networks greatly reduce computational time
and often produce results similar to those obtained
by multiple hidden-layer networks (Kurková
1992). Below, we discuss two important features
of ANNs: network architecture and the back-
propagation algorithm used to parameterize the
network, and interpretation of variable importance
in the network.

Network architecture and the back-propagation
algorithm.—Network architecture refers to the
number and organization of the computing units
(called neurons) in the network. In the one-hidden-
layer, feed-forward network, neurons are orga-
nized in an input layer, a hidden layer, and an
output layer, with each layer containing one or
more neurons (Figure 1). Each neuron is connected
by an axon to all neurons in adjacent layers; how-
ever, neurons within each layer and in nonadjacent
layers are not connected. The input layer typically
contains p neurons, one neuron representing each
of the predictor variables x1 . . . xp. The number
of neurons in the hidden layer is determined em-
pirically by the investigator to minimize the trade-
off between bias and variance (Geman et al. 1992).
Additional hidden neurons increase the ability of
a network to approximate any underlying rela-
tionship among the variables, that is, reduced bias,
but result in the network having a large number
of free parameters, thereby increasing the variance

of predictions because of overfitting the data. Al-
though mathematical derivations exist for select-
ing an optimal design, in practice it is common to
train networks with different numbers of hidden
neurons and use the performance on a test set to
choose the network that performs best. For con-
tinuous and binary response variables the output
layer commonly contains one neuron. However,
the number of output neurons can be greater than
one if there is more than one response variable or
if the response variable is categorical (that is, a
separate neuron is used for classifying observa-
tions into each category). Additional neurons with
a constant output (commonly set to 1) are also
added to the hidden and output layers (Figure 1),
although this inclusion is not mandatory. These
are called bias neurons, and play a role similar to
that of the constant term in multiple regression
analysis.

The connection between any two neurons is as-
signed a weight that dictates the intensity of the
signal they transmit through the axon. Conse-
quently, the ‘‘state’’ or ‘‘activity level’’ of each
neuron is determined by the input received from
the other neurons connected to it. In feedforward
networks, axon signals are transmitted in a uni-
directional path from input layer to output layer
through the hidden layer. The states of the input
neurons are defined by the incoming signal or val-
ues of the predictor variables. The state of each
hidden neuron is evaluated locally by calculating
the weighted sum of the incoming signals from the
neurons of the input layer (Figure 1 inset) and then
adding a bias input. The weighted sum is then
subjected to an activation function, that is, a dif-
ferentiable function of the neuron’s total incoming
signal from the input neurons, to produce the state
of the hidden neuron (Figure 1 inset). The same



881FISH HABITAT RELATIONSHIPS

procedure described above is repeated for the axon
signals from the hidden layer to the output layer.
The entire process can be written mathematically
as

y 5 f b 1 w f b 1 w x (1)O Ok o k jk h j i j i5 1 26j i

where xi are the input signals, yk are the output
signals, wij are the weights between input neuron
i to hidden neuron j, wjk are the weights between
hidden neuron j and output neuron k, bj and bk are
the biases associated with the hidden and output
layers, respectively, and fh and fo are activation
functions for the hidden and output layers, re-
spectively. There are several activation functions,
but the logistic function defined as

1
f (x) 5 (2)

2x1 1 e

is the most commonly used.
Training the neural network involves an error

back-propagation algorithm, which finds a set of
connection weights that produces an output signal
with a small error relative to the observed output.
During training, the weights are adapted to mini-
mize some fitting criterion. For continuous output
variables, the most commonly used criterion is the
least-squares error function

n n 2E 5 \t 2 y \ (3)O
n

whereas for dichotomous output variables, the
most commonly used criterion is the cross-entropy
(i.e., similar to log-likelihood) error function
(Bishop 1995):

n n n nE 5 2 {t log y 1 (1 2 t )log (1 2 y )} (4)O e e
n

where tn is the observed output value and yn is the
predicted output value for the observation. The
algorithm adjusts the connection weights in a
backwards fashion, layer by layer, in the direction
of steepest descent in minimizing the error func-
tion (also called gradient descent). One iteration
of the gradient descent algorithm can be summa-
rized as follows:

]E
Dw 5 2 (5)st ]wst

where Dwst is the weight change between neuron
s and neuron t in the next layer. The training of
the network is a recursive process in which ob-

servations from the training data are entered into
the network in turn, each time modifying the in-
put–hidden and hidden–output connection weights
(using equation 5). This procedure is repeated with
the entire training data set (i.e., each of the n ob-
servations) for several iterations until a stopping
rule is achieved. This type of training is a se-
quential approach to network optimization and is
in contrast to the batch approach, in which the
entire data set is used to adjust the weights during
each iteration (Bishop 1995). Commonly, network
training is stopped when the difference between
predicted outputs from the network and the ob-
served output (i.e., the error function) is small or
when the possibility of overfitting the data is min-
imized.

Interpreting variable importance in ANNs.—Al-
though many studies have shown ANNs exhibit
greater predictive power than traditional approach-
es do (e.g., Lek et al. 1996), researchers often call
it a ‘‘black box’’ approach to statistical modeling
because the networks are believed to provide little
explanatory insight into the relative influence of
the independent variables in the prediction process
(Lek and Guégan, 1999; Özesmi and Özesmi,
1999). The lack of explanatory power is a major
concern because the interpretation of statistical
models is desirable for gaining knowledge of the
causal factors driving ecological phenomena. This
has been a major pitfall of ANNs because tradi-
tional statistical approaches can readily identify
the influence of the independent variables in the
modeling process and also provide a degree of
confidence regarding their contribution. Fortu-
nately, recent studies have provided various meth-
ods for quantifying and interpreting the contri-
butions of the independent variables in neural net-
works. For example, several intensive computa-
tional approaches have been developed, including
growing and pruning algorithms (Bishop 1995),
partial derivatives (e.g., Dimopoulos et al. 1995),
and asymptotic t-tests.

In the neural network, the connection weights
between neurons are the linkages between the in-
puts and the output of the network and therefore
are the link between the problem and the solution.
Consequently, the relative contribution of each in-
dependent variable to the predictive output of the
neural network depends primarily on the magni-
tude and direction of these connection weights.
Input variables with larger connection weights rep-
resent greater intensities of signal transfer and
therefore are more important in predicting the out-
put than are variables with smaller weights. Neg-
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FIGURE 2.—Functional response of simulated data sets
showing (A, B) species abundance and (C, D) presence/
absence response curves to a single habitat variable. See
Methods for description of data.

ative connection weights represent inhibitory ef-
fects on neurons (reducing the intensity or contri-
bution of the incoming signal and negatively af-
fecting the output), whereas positive connection
weights represent excitatory effects on neurons
(increasing the intensity of the incoming signal and
positively affecting the output). Recently, some
studies have used connection weights to interpret
the participation of input variables in predicting
the output of the network (e.g., Aoki and Komatsu
1997; Chen and Ware 1999; Özesmi and Özesmi
1999). Other approaches involve using all the
weights of the network to quantify overall variable
importance (e.g., Garson 1991) and use sensitivity
analysis to determine the spectrum of input vari-
able contributions in the neural network (e.g., Lek
et al. 1996; Mastrorillo et al. 1997; Guégan et al.
1998). Although these approaches can determine
the overall influence of each predictor variable, the
interpretation of interactions among the variables
is more difficult to assess because the strength and
direction of individual axon connection weights
within a network must be examined directly. Even
with small networks, the number of connections
is large, and thus the interpretation of the network
is difficult. For example, a network containing 10
input neurons and 7 hidden neurons would have
70 connection weights to examine. Bishop (1995)
suggested removing small weights from the net-
work to ease interpretation; however, deciding
which weights should be retained or eliminated
from the network is a difficult task.

We have developed a randomization test for
ANNs to address this question. This approach ran-
domizes the response variable, then constructs a
neural network by using the randomized data and
records all input—hidden–output connection
weights (the product of the input–hidden and
hidden–output weights). This process is repeated
10,000 times to generate a null distribution for
each input–hidden–output connection weight
(10,000 randomizations ensures stability of the es-
timated probability values; Jackson and Somers
1989), which is then compared with the observed
values to calculate the significance level (see Old-
en 2000a for more details). The randomization test
provides an objective pruning technique for elim-
inating connection weights that have minimal in-
fluence on the network output and identifies in-
dependent variables that significantly contribute to
the prediction process.

In this study, the optimal number of neurons in
the hidden layer was determined empirically by
comparing the performance of different networks

having 1–20 hidden neurons and choosing the net-
work with the best predictive performance. We in-
cluded learning rate (h) and momentum (a) pa-
rameters (which vary as a function of the network
prediction error) during network training to ensure
a high probability of global network convergence
(Bishop 1995) and considered a maximum of 1,000
iterations for the back-propagation algorithm to
determine the optimal axon weights. Before train-
ing the neural network, the independent variables
for both modeling species occurrence and abun-
dance were converted to z-scores to standardize
the measurement scales of the inputs into the net-
work and thus ensure that the same percentage
change in the weighted sum of the inputs caused
a similar percentage change in the unit output.

Methods

ANNs versus traditional regression approaches:
simulated data.—We compared the predictive per-
formance of ANNs and regression models by using
simulated data with defined correlations among the
variables. To compare the performance of neural
networks and linear regression models for pre-
dicting species abundance (i.e., continuous re-
sponse variable), we generated two data sets, each
containing 50 observations and with values of the
habitat variable ranging from 0 to 10. The first
data set has a Gaussian or normal-curve response
(characterized by a mean of 5 and a variance of
1) in the abundance of a species to the habitat
variable (Figure 2a). This response curve is com-
monly used in theoretical models that are related
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to the species niche concept. In the second data
set, species abundance was generated to show a
linear association (slope 5 1) to the habitat vari-
able (Figure 2b). Similarly, two data sets were gen-
erated to compare ANNs and logistic regression
analysis for predicting species presence/absence
(i.e., dichotomous response variable). The first
data set was constructed by converting the Gauss-
ian data set described above (Figure 2a) to a pres-
ence/absence response distribution (Figure 2c).
The conversion was accomplished by defining all
abundances greater than 0.02 to represent species
presence; those below this value were coded as
species absence. As a result, this data set contained
an equal number of presence and absence values.
In the second data set, the probability of species
occurrence was simulated to have a logistic (or
sigmoidal) response curve, following equation (2),
with the habitat variable ranging from 25 to 5.
Using the simulated data sets described above, we
compared the predictive performance of the neural
networks with that of the traditional regression
models. The linear species abundance curve and
logistic species occurrence curve represent ‘‘op-
timal’’ data types for the traditional regression ap-
proaches in terms of distributional characteristics,
whereas the Gaussian species abundance and oc-
currence curves represent a nonlinear relationship
in which the probability of species occurrence or
abundance is maximized at intermediate values of
a habitat variable (e.g., the probability of a species
occurrence in relation to stream velocity such that
the species is absent from pools, abundant within
moderately flowing water, but absent from high-
velocity systems). For all analyses the data points
were sampled at uniform distances along the hab-
itat variable.

ANNs for fish species presence/absence.—The
study sites were 128 lakes from the Madawaska
River drainage and 32 lakes from the Oxtongue
River drainage, located in Algonquin Provincial
Park, Ontario, Canada (45850’N, 78820’W; Figure
3a). Aquatic communities in this region are rep-
resentative of relatively natural ecosystems be-
cause the lakes are located in a provincial park and
are currently subject to minimal perturbations
from human development—although limited spe-
cies introductions (e.g., smallmouth bass) were
made into the area during the early 1900s, which
subsequently colonized some adjacent waters. We
developed fish–habitat models for nine fish spe-
cies—brown bullhead Ameiurus nebulosus, com-
mon shiner Luxilus cornutus, creek chub Semotilus
atromaculatus, golden shiner Notemigonus cryso-

leucas, lake trout Salvelinus namaycush, northern
redbelly dace Phoxinus eos, pumpkinseed Lepomis
gibbosus, smallmouth bass Micropterus dolomieu,
and yellow perch Perca flavescens—by modeling
species presence/absence as a function of seven
whole-lake variables. The predictor variables are
factors related to known habitat requirements of
fish in this geographic region (Matuszek and Beggs
1988; Minns 1989): surface area, total shoreline
perimeter, maximum depth, total dissolved solids
(TDS), pH, lake elevation, and occurrence of sum-
mer stratification (Table 1). For small-bodied fish
(i.e., common shiner, creek chub, golden shiner,
and northern redbelly dace), we included the pres-
ence/absence of a littoral-zone predator (small-
mouth bass, largemouth bass, or northern pike) as
an additional predictor variable because predation
could be an important force (Jackson et al. 2001).
Data were obtained from the Algonquin Park Fish
Inventory Data Base (Crossman and Mandrak
1991); details of sampling methodologies are as
described in Dodge et al. (1985).

To evaluate predictive performance, we vali-
dated the fish–habitat models by using two ap-
proaches. First, we used n-fold or ‘‘leave-one-out’’
cross-validation (also referred to as jackknife val-
idation) to assess model performance in 128 lakes
from the Madawaska River drainage. This tech-
nique provides a nearly unbiased estimate of mod-
el performance (Olden and Jackson 2000). Second,
we tested the ability of the Madawaska-drainage
models to predict species occurrence in 32 lakes
from the adjacent Oxtongue River drainage. This
analysis provides an opportunity to assess the
transferability or generalization of the models to
other drainages in the same geographic region. We
partitioned the overall classification success of
each species model by deriving confusion matrices
(Fielding and Bell 1997). A confusion matrix tab-
ulates the observed and predicted presence/ab-
sence patterns and thus provides a summary of the
number and direction of correct and incorrect clas-
sifications produced by the model. Using these ma-
trices, we examined three metrics of prediction
success. First, we quantified the overall classifi-
cation performance of the model as the percentage
of lakes where the model correctly predicts the
presence/absence of the species (correct classifi-
cation). Second, we examined the ability of the
model to accurately predict species presence (mod-
el sensitivity). Third, we examined the ability of
the model to accurately predict species absence
(model specificity). Rather than simply following
the conventional decision threshold of 0.5 (the cut-
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FIGURE 3.—(A) Location of study lakes from the Madawaska River drainage (128 lakes depicted by circles) and
Oxtongue River drainage (32 lakes depicted by triangles) in Algonquin Provincial Park, Ontario, Canada (45850’N,
78820’W), and (B) Crosson Lake (45805’N, 77820’W), with 20 sampling stations depicted by numbered circles.

off at which a species is predicted to be present),
we constructed receiver-operating characteristic
(ROC) plots for each species to estimate the pre-
dictive ability of the models over all decision
thresholds (Metz 1978; Fielding and Bell 1997).
A ROC graph is a plot of the sensitivity/specificity

pairs resulting from continuously varying the de-
cision threshold over the entire range of results
observed. The optimal decision threshold is cho-
sen to maximize overall classification performance
of the model, assuming the costs of misclassifying
the species as present or absent are equal. The
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TABLE 1.—Summary statistics of whole-lake habitat variables used in the neural networks and logistic regression
models to predict species presence/absence. The abbreviation CI stands for confidence interval.

Whole-lake variables

Madawaska River drainage
(training data)

Median 95% CI

Oxtongue River drainage
(test data)

Median 95% CI

Area (ha)
Maximum depth (m)
Shoreline perimeter (km)
Elevation (m)
Total dissolved solids (mg/L)
pH
Summer stratification (0, 1)
Littoral-zone predator (0, 1)

29.6
13.7
4.0

432
26.0
7.0

(4.0, 417.6)
(3.1, 36.1)
(1.0, 22.9)
(390, 475)
(18.4, 51.3)

(6.0, 7.5)

83.5
19.1
8.0

436
22.0
7.0

(10.1, 617.1)
(3.9, 49.3)
(2.0, 43.1)

(419, 488)
(18.1, 48.3)

(6.3, 7.5)

optimal decision threshold is used to calculate cor-
rect classification, sensitivity, and specificity, and
Cohen’s kappa statistic is used to assess whether
the performance of the model differs from expec-
tations based on chance alone (Titus et al. 1984).

Next, we provided an empirical comparison of
ANNs with logistic regression analysis for pre-
dicting species presence/absence. The predictive
performances of ANNs and logistic regression
models for species occurrence were compared for
rates of overall correct classification, sensitivity,
and specificity. Note that ROC analysis was used
to determine optimal decision thresholds for the
logistic models also. Screening the data charac-
teristics of the habitat variables before analyses
led us to use loge(x) transformation of all contin-
uous variables except pH and the littoral-zone
predator variable.

ANNs for fish species abundance.—In the within-
lake analysis we examined fish–habitat associa-
tions for four of the most abundant species (golden
shiner, creek chub, pumpkinseed, and yellow
perch) in Crosson Lake, located in southcentral
Ontario, Canada (45805’N, 79802’W). Sampling
was done twice (in July and August) and consisted
of approximately 24-h sets of baited minnow traps
at depths of both 0.5 m and 1.5 m at 20 locations
around the perimeter of the lake (Figure 3b). The
relative abundances of species were calculated by
standardizing each catch to a 24-h sampling pe-
riod. Eight habitat variables were examined. Sites
were categorized on the basis of substrate type
(categorized into eight ordered categories based
on particle size, ranging through muck, clay, silt,
sand, gravel, rubble, and boulder to bedrock), sub-
strate diversity (a measure of the diversity of bot-
tom types present), presence of terrestrial leaf lit-
ter, relative cover of vegetation (none, sparse,
moderate, or dense), relative cover of woody ma-
terials (none, sparse, moderate, or dense), degree

of exposure (none, limited, moderate, or extreme),
depth (0.5 or 1.5 m), and sampling month; sam-
pling month was included as a binary predictor
variable to determine whether a temporal com-
ponent was important in predicting relative abun-
dance. Habitat was assessed visually from within
a boat at each sampling location, and sites con-
taining multiple values of any habitat variable
were averaged to give a single value per site.

Associations between species abundance and
the eight within-lake habitat variables were mod-
eled by using ANNs (again determining the opti-
mal number of hidden neurons between 1 and 20).
The dependent variable was standardized to the
range from 0 to 1 to conform to the requirements
of the logistic transfer function used in building
the neural network. Predictive performance of the
models was evaluated by using n-fold cross-
validation, as was done for the species-occurrence
models. Performance of the models was assessed
by Pearson’s product-moment correlation coeffi-
cient between predicted and actual species abun-
dance, and the root-mean-square-of-error (RMSE)
of the predicted values. The Pearson’s correlation
provides a measure of model accuracy, the better
models being represented by correlation coeffi-
cients approaching 1. RMSE measures model pre-
cision, small values representing high precision
and large values indicating low precision.

We then provided an empirical comparison of
ANNs with linear regression analysis for predict-
ing species abundance. Predictive performances of
ANNs and regression models for species abun-
dance were compared for values of Pearson’s
product-moment correlation coefficients and
RMSE. Data characteristics of the habitat variables
were screened before analyses, which led us to
perform loge(x) transformation of all variables and
standardization to z-scores.
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TABLE 2.—Comparison of neural network and regression-based approaches for modeling simulated species response
curves (see Methods for description of data). Reported values are the percent correct classification (CC), sensitivity
(SE), and specificity (SP) for modeling species presence/absence and Pearson’s correlation coefficient (r) between
predicted and actual values and the root mean square error (RMSE) of the prediction for modeling species abundance.

Neural network vs. logistic regression Neural network vs. linear regression

Variable

Neural network

CC SE SP

Logistic regression

CC SE SP

Neural network

r RMSE

Linear regression

r RMSE

Presence/absence
Gaussian species response
Logistic species response

90
100

88
100

92
100

0
100

0
100

0
100

Abundance
Gaussian species response
Linear species response

1.00
1.00

0.017
0.000

0.10
1.00

0.230
0.000

Results

ANNs versus Traditional Regression Approaches:
Simulated Data

Examining the simulated species occurrence
data (Table 2) makes evident that ANNs greatly
outperform logistic models for the Gaussian spe-
cies response curve (i.e., nonlinear species–habitat
relationship). Importantly, in this case the logistic
model never resulted in a correct classification be-
cause the logistic function was unable to success-
fully model the species–habitat relationship, and
thus predictions were based solely on chance. Giv-
en that the simulated data contained equal numbers
of species presences and absences, the accuracy of
chance predictions from the logistic model will
depend directly on the portion of species presence
and absence values (i.e., species prevalence) in the
data. If during the cross-validation procedure a
case of species absence is removed before con-
struction of the model, species presence will be
greater than 50% in the data set, and the logistic
model therefore will randomly predict species
presence even though ultimately this decision is
incorrect. This removal thus results in rates of cor-
rect classification, sensitivity, and specificity equal
to zero. In contrast, where a species occurrence
follows a logistic response curve in relation to the
habitat variable, both ANNs and logistic models
have perfect classification success. This result is
expected for the logistic model, given that the spe-
cific data assumptions were met. Together, the re-
sults show that ANN greatly outperforms the linear
regression models for the Gaussian species re-
sponse curve, whereas both approaches perform
equally in the linear case (Table 2).

ANNs for Fish Species Presence/Absence

Whole-lake attributes were found to be useful
predictors of species presence/absence (Table 3).

Across both drainages, species were classified cor-
rectly in 60.9–84.5% of the lakes, whereas model
sensitivity and specificity varied widely among
species and between drainages. In the Madawaska
drainage the predictive performance for seven of
the nine species–habitat models differed signifi-
cantly from random. Smallmouth bass and lake
trout exhibited the highest correct classification
rates, creek chub and pumpkinseed showed the
greatest sensitivity, and brown bullhead and gold-
en shiner had the greatest specificity. The neural
interpretation diagrams for smallmouth bass, lake
trout, common shiner, and northern redbelly dace
are shown in Figure 4. In these diagrams, the rel-
ative magnitude of the connection weights is rep-
resented by line thickness (i.e., thicker lines rep-
resenting greater weights) and line type represents
the direction of the weights (i.e., solid lines rep-
resent positive signals and dashed lines represent
negative signals). The relationship between the in-
puts and outputs is determined in two steps be-
cause there are input–hidden layer connections and
hidden–output layer connections. Positive effects
of input variables are depicted by positive input–
hidden and positive hidden–output connection
weights, or negative input–hidden and negative
hidden–output connection weights. Negative ef-
fects of input variables are depicted by positive
input–hidden and negative hidden–output connec-
tion weights, or by negative input–hidden and pos-
itive hidden–output connection weights. There-
fore, the multiplication of the two connection
weight directions (positive or negative) indicates
the effect that each input variable has on the re-
sponse variable. Interactions among predictor var-
iables can be identified as input variables with op-
posing connection weights entering the same hid-
den neuron. The total contribution of an input var-
iable is calculated as the sum of the products of
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TABLE 3.—Performance of neural networks in predicting species presence/absence in 128 lakes in the Madawaska
River drainage (training data) based on n-fold cross validation and application of the Madawaska networks to predict
presence/absence in 32 lakes from the Oxtongue River drainage (test data). The reported values are the number of
hidden neurons in the network (#HN), percent species occurrence in the drainage (SO), the optimal decision threshold
based on receiver-operating characteristic analysis (ODT) in which species with model probabilities greater than this
value are predicted to be present, percent correct classification (CC), sensitivity (SE), specificity (SP), and the Kappa
z-value statistic and associated P-value.

Species #HN

Madawaska River drainage
(training data)

SO ODT CC SE SP Kappa P

Oxtongue River drainage
(test data)

SO CC SE SP Kappa P

Brown bullhead
Common shiner
Creek chub
Golden shiner
Lake trout
Northern

redbelly dace
Pumpkinseed
Smallmouth bass

5
3
4
3
2

4
2
4

37.5
43.8
65.6
35.2
43.0

53.1
60.2
25.0

0.59
0.59
0.90
0.54
0.54

0.53
0.79
0.39

67.2
66.4
65.6
64.8
75.0

60.9
68.8
80.5

41.7
64.3
95.2
35.6
70.9

58.8
94.8
50.0

82.5
68.1
9.1

80.7
78.1

63.3
29.4
90.6

2.58
3.60
0.46
1.70
5.18

2.47
1.44
3.62

0.005
0.000
0.323
0.045
0.000

0.007
0.075
0.000

65.6
53.1
62.5
37.5
56.3

28.1
65.6
46.9

65.6
84.5
78.1
62.5
78.1

71.9
65.6
71.9

90.5
82.4
90.0
41.7
88.9

55.6
90.5
53.3

18.2
86.7
58.3
75.0
64.3

78.3
18.2
88.2

0.45
3.88
2.58
0.89
2.96

1.57
0.45
2.34

0.326
0.000
0.005
0.187
0.002

0.058
0.326
0.010

Yellow perch 3 68.0 0.52 72.7 93.1 29.3 2.28 0.011 75.0 81.3 95.8 37.5 1.53 0.063

Mean
SD

47.9
13.9

69.1
6.0

71.7
23.3

54.5
26.5

2.59
1.31

54.5
14.1

73.3
7.7

80.4
18.7

54.4
25.1

1.85
1.11

FIGURE 4.—Neural interpretation diagrams for predicting fish species presence/absence as a function of whole-
lake habitat variables. The thickness of the lines joining neurons is proportional to the magnitude of the connection
weight, and line type indicates the direction of the interaction between neurons: Solid line connections are positive
(excitators) and dashed line connections are negative (inhibitors). All connection weights are statistically different
from zero (a 5 0.05). Black input neurons indicate habitat variables that have an overall positive influence on
species presence/absence; hatched input neurons indicate an overall negative influence on species presence/absence.
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FIGURE 5.—The relative importance (% of total con-
tribution) of whole-lake habitat variables in predicting
the presence/absence of a species. Black bars indicate
habitat variables that have an overall positive influence
on species occurrence; hatched bars indicate an overall
negative influence on species presence/absence. Aster-
isks indicate variables that make significant contribu-
tions according to the randomization test.

its input–hidden 3 hidden–output connection
weights, and the relative contribution of each var-
iable (expressed as a percent) is calculated by di-
viding the total contribution by the sum of the
absolute total contributions of all variables in the
network and multiplying by 100.

Individual and interacting influences of the hab-
itat variables on the predicted probability of spe-
cies occurrence were interpreted when connection
weights differed significantly from random (based
on a 5 0.05), and thus all neural interpretation
diagrams illustrate only the connection weights
that are nonrandom. The probability of small-
mouth bass occurrence is positively correlated
with lake area, shoreline perimeter, and TDS
through hidden neuron A, as well as by lake ele-
vation through hidden neuron B (Figure 4). In con-
trast, pH (hidden neuron A) and elevation (hidden
neurons C and D) negatively influence the prob-
ability of occurrence. Focusing on hidden neuron
C shows that the effects of lake elevation and TDS
interact such that the negative influence of ele-
vation on the probability of smallmouth bass oc-
currence weakens as TDS increases. Summing
weights across all hidden neurons shows that
shoreline perimeter and TDS have a significant
positive effect on the predicted probability of
smallmouth bass occurrence (Figure 5). The lake
trout neural interpretation diagram shows that lake
area and shoreline perimeter interact through hid-

den neuron A, resulting in the negative influence
of surface area weakening as shoreline perimeter
increases (Figure 4). Increasing maximum depth,
shoreline perimeter, and elevation result in an in-
creased probability of the occurrence of lake trout
(Figure 5). Similar to lake trout, the probability of
common shiner occurrence is affected by the in-
teraction between area and shoreline perimeter
(hidden neuron C; Figure 4). No habitat variables
significantly contribute to predicted probabilities
of common shiner occurrence, although lake area
shows the strongest influence (Figure 5). The prob-
ability of northern redbelly dace occurrence de-
creases with the presence of a littoral-zone pred-
ator. However, this negative influence weakens
with increasing shoreline perimeter and elevation
(hidden neuron D; Figure 4). Maximum depth and
elevation positively influence the probability of
northern redbelly dace occurrence, whereas the
presence of a littoral-zone predator has a strong
negative influence (Figure 4).

The Madawaska lake models can be transferred
readily to the Oxtongue drainage lakes, with rates
of correct classification, sensitivity, and specificity
being very similar for both drainages (Table 3).
Because of differences in the frequency of occur-
rence of the species between the two drainages,
only four of the nine species–habitat models differ
significantly from random at the 5% level, al-
though six of the nine are significant at a slightly
less conservative level (i.e., P # 0.063). Most no-
tably, common shiner, lake trout, and smallmouth
bass are highly predictable in both the Madawaska
and Oxtongue drainages. Moreover, for many spe-
cies the optimal decision threshold for classifying
a species as present or absent deviates from 0.5,
but typically falls in the 0.4–0.6 range.

ANNs Versus Logistic Regression: Species
Presence/Absence

We found that neural networks showed greater
or equal correct classification rates than logistic
models did for 14 of 18 fish–habitat models across
the two drainages (Tables 3 and 4). On average
ANNs outperformed logistic models by 2.2% for
the Madawaska drainage and by 9.1% for the Ox-
tongue drainage; for many species, however, the
difference between the approaches was greater. For
example, common shiner, smallmouth bass, and
northern redbelly dace were correctly predicted in
an additional 16–41% of the Oxtongue lakes by
using ANNs (Figure 6). Sensitivity and specificity
values were similar for both approaches, although
on average ANNs exhibited greater sensitivity and
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TABLE 4.—Performance of logistic regression models in predicting species presence/absence in 128 lakes in the
Madawaska River drainage (training data) based on n-fold cross validation and application of the Madawaska networks
to predict presence/absence in 32 lakes from the Oxtongue River drainage (test data). The reported values are the percent
species occurrence in the drainage (SO), the optimal decision threshold based on receiver-operating characteristic analysis
(ODT) in which species with model probabilities greater than this value are predicted to be present, percent correct
classification (CC), sensitivity (SE), specificity (SP), and the Kappa z-value statistic and associated P-value.

Species

Madawaska River drainage
(training data)

SO ODT CC SE SP Kappa P

Oxtongue River drainage
(test data)

SO CC SE SP Kappa P

Brown bullhead
Common shiner
Creek chub
Golden shiner
Lake trout
Northern

redbelly dace
Pumpkinseed
Smallmouth bass
Yellow perch

37.5
43.8
65.6
35.2
43.0

53.1
60.2
25.0
68.0

0.62
0.65
0.90
0.49
0.46

0.52
0.80
0.39
0.50

64.1
60.9
65.6
64.8
77.3

55.5
68.0
75.0
71.1

29.2
30.4
81.0
8.9

65.5

77.9
81.8
0.0

81.6

85.0
84.7
36.4
95.2
86.3

30.0
47.1

100.0
48.8

1.51
1.68
1.78
0.43
5.74

0.90
3.14
0.00
3.03

0.066
0.045
0.038
0.334
0.000

0.184
0.001
0.500
0.001

65.6
53.1
62.5
37.5
56.3

28.1
65.6
46.9
75.0

59.4
68.8
71.9
65.6
75.0

31.3
75.0
53.1
78.1

38.1
58.8

100
8.3

88.9

100
90.5
0

83.3

100
80.0
25.0

100
57.1

4.4
45.5

100
62.5

1.96
2.19
1.35
0.46
2.56

0.22
1.86
0
1.99

0.025
0.014
0.089
0.325
0.005

0.414
0.031
0.500
0.023

Mean
SD

47.9
13.9

66.9
6.8

50.7
33.5

68.2
27.2

2.02
1.75

54.5
14.1

64.2
14.8

63.1
39.0

63.8
34.7

1.39
0.94

logistic models exhibited greater specificity (Ta-
bles 3 and 4). A reduction in correct classification
rates associated with the logistic models resulted
in only five species–habitat models differing from
random for the Madawaska lakes (compared with
seven for ANNs). Five logistic models differed
from random for the Oxtongue lakes (compared
with four for ANNs), but this variability reflects
a general lack of predictive directionality for the
logistic models (i.e., more balanced levels of sen-
sitivity and specificity).

ANNs for Fish Species Abundance

Within-lake variables predict species abundance
with good accuracy and precision for creek chub
(r 5 0.833, RMSE 5 0.194), golden shiner (r 5
0.783, RMSE 5 0.260), pumpkinseed (r 5 0.734,
RMSE 5 0.209), and yellow perch (r 5 0.784,
RMSE 5 0.204). The neural interpretation dia-
grams highlight relationships between predicted
abundances and habitat for each species (Figure
7). For yellow perch the positive influence of wood
cover on predicted abundance weakens with in-
creasing density of vegetation (hidden neuron E),
and the positive relationship between predicted
abundance and depth diminishes with increasing
site exposure (hidden neuron A; Figure 7). The
amount of wood cover and depth contributes pos-
itively to the predicted yellow perch abundance,
whereas vegetation density contributes negatively
(Figure 8). Similarly, interactions among habitat
variables for pumpkinseed abundance were com-
mon. The positive influence of wood cover and

litter on predicted abundance weakens with in-
creasing site exposure and depth (hidden neuron
A; Figure 7). Accounting for all connection
weights, increasing amounts of cover and litter and
decreasing depth predict greater abundance of
pumpkinseed (Figure 8). Predicted golden shiner
abundance is negatively correlated with the
amount of wood cover, but this relationship weak-
ens with increasing depth (hidden neuron C; Fig-
ure 7). Overall, golden shiner abundance exhibits
a positive association with vegetation density and
a negative association with wood cover and sam-
pling month (Figure 8). Predicted creek chub abun-
dance is negatively associated with the presence
of leaf litter and substrate type; however, this as-
sociation diminishes with increasing depth (hidden
neuron C; Figure 7). Vegetation density and depth
have a positive influence, whereas leaf litter neg-
atively influence predicted abundance of creek
chub (Figure 8).

ANNs Versus Linear Regression: Species
Abundance

We found that neural networks outperformed
multiple linear regression models for predicting
species abundance in Crosson Lake. Based on the
regression model, within-lake variables predicted
species abundance with moderate accuracy and
precision for creek chub (r 5 0.810, RMSE 5
0.221), golden shiner (r 5 0.713, RMSE 5 0.298),
pumpkinseed (r 5 0.689, RMSE 5 0.241), and
yellow perch (r 5 0.731, RMSE 5 0.234). ANNs
exhibited higher correlations between predicted
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FIGURE 6.—Comparison of percent-correct classifi-
cation rates for ANNs versus logistic regression models
for presence/absence in the Madawaska and Oxtongue
River drainages. Species codes refer to brown bullhead
(BBH), creek chub (CC), common shiner (CS), golden
shiner (GS), lake trout (LT), northern redbelly dace
(NRD), pumpkinseed (PKS), smallmouth bass (SMB),
and yellow perch (YP). Northern redbelly dace in the
Oxtongue River drainage is not shown because the lo-
gistic regression model correctly classified its presence/
absence in only 31.3% of the lakes, whereas the neural
networks correctly classified its presence/absence in
71.9% of the lakes.

and observed abundances (ranging from 2.3% to
7.0%) and lower RMSE of predictions (ranging
from 0.027 to 0.038) for all four species modeled.

Variable Selection in ANNs

In addition to using the results from the ran-
domization test to interpret variable contributions,
we used the approach as a variable selection meth-
od for removing input and hidden neurons for
which incoming or outgoing connection weights
were not significantly different from random. Re-
testing the predictive performance of these
‘‘pruned’’ networks, we found that the predict-

ability of both species occurrence and abundance
was generally unaffected by the removal of non-
significant neurons in the network (Table 5). For
example, the predictability of lake trout occurrence
in the pruned network was similar to that in the
original (unpruned) network, but the clarity of the
network topology was improved. Ultimately, re-
moving null hidden neurons and connection
weights eases the interpretation of variable con-
tributions in the network.

Discussion

Modeling Fish–Habitat Associations by Using
ANNs

ANNs have several advantages over traditional
modeling approaches that make them potentially
beneficial for modeling fisheries data. ANNs are
capable of modeling nonlinear associations for a
variety of data types (e.g., continuous, discrete),
require no specific assumptions concerning the
distributional characteristics of the independent
variables, and can accommodate interactions
among predictor variables without any a priori
specification (Ripley 1996). Because ANNs ap-
proximate any continuous function (Cybenko
1989; Funahashi 1989; Hornick et al. 1989), they
exhibit flexibility for modeling nonlinear relation-
ships between variables. For these reasons, the ap-
plication of ANNs for pattern recognition and pre-
diction has been advocated by researchers in sev-
eral disciplines and has been shown in many eco-
logical studies to exhibit greater predictive
capabilities than traditional approaches such as
regression-based techniques (e.g., Lek et al. 1996;
Mastrorillo et al. 1997; Lek and Guégan 1999; this
study). Indeed, the results from our study show
that ANNs can provide a powerful quantitative ap-
proach for modeling fish–habitat relationships.
Comparisons to traditional regression approaches
showed that for almost all species ANNs provided
greater power for predicting species occurrence
and abundance. We stress, however, that where the
underlying data structure and assumptions are met
for a particular traditional statistical technique,
there is no reason to believe that major differences
will exist between traditional approaches and
ANNs. The results of our simulation experiment
support this perspective. ANNs were shown to be
superior to regression approaches for nonlinearly
distributed data (i.e., Gaussian species response
curves), whereas both approaches showed identi-
cal predictive power for the logistic and linear spe-
cies response curves. Nonetheless, given that eco-
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FIGURE 7.—Neural interpretation diagrams for predicting fish species abundance as a function of within-lake
habitat variables. The thickness of the lines joining neurons is proportional to the magnitude of the connection
weight, and line type indicates the direction of the interaction between neurons: Solid line connections are positive
(excitators) and dashed line connections are negative (inhibitors). All connection weights are statistically different
from zero (a 5 0.05). Black input neurons indicate habitat variables that have an overall positive influence on
species abundance; hatched input neurons indicate an overall negative influence on species abundance.

logical data are commonly nonlinear in nature, that
different solutions may arise due to specific choic-
es of transformations, and achieving linearity is
often not possible (e.g., Lek et al. 1996; Guégan
et al. 1998; Wally and Fontama 1998), we believe
ANNs provide an attractive alterative. Ultimately,
more detailed simulation studies assessing simi-
larities and differences between traditional and al-
ternative statistical approaches using a broader va-
riety of known data conditions are critically need-
ed.

We have shown that species presence/absence
was predictable from whole-lake measures of hab-
itat, which is consistent with many studies of tem-
perate fish populations (Jackson and Harvey 1989;
Tonn et al. 1990; Magnuson et al. 1998). Species
such as smallmouth bass and lake trout were pre-
dicted with high accuracy, an especially attractive

result, given the economic and societal importance
of these sport fishes. Similarly, ANNs provided
accurate predictions of species abundance based
on within-lake habitat characteristics. Although
many researchers consider ANNs to have a prac-
tical disadvantage of failing to supply the explan-
atory insight provided by traditional approaches,
our study shows that the contribution of the in-
dependent variables in the neural network can be
quantified by direct evaluation of the connection
weights. This examination is further aided by using
a randomization approach to remove nonsignifi-
cant weights that do not contribute to the network
prediction, thus assisting in the interpretation of
direct and interacting effects of the variables in
the network and simplifying the network structure
(see Olden 2000b for another application of the
randomization approach). For example, overall
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FIGURE 8.—Relative importance (% of total contri-
bution) of within-lake habitat variables in predicting
species abundance. Black bars indicate habitat variables
that have an overall positive influence on species abun-
dance; hatched bars indicate an overall negative influ-
ence on species abundance. Asterisks indicate variables
that make significant contributions according to the ran-
domization test.

TABLE 5.—Comparison of model predictions of full and pruned neural networks. In the pruned networks, input
variables and hidden neurons that were not statistically significant from zero (based on randomization test results) were
removed; the pruned network design is given after the species name, with the three values representing the number of
input, hidden, and output neurons, respectively. The reported values are the percent correct classification (CC), sensitivity
(SE), and specificity (SP) for predicting species presence/absence (based on the optimal decision threshold from receiver-
operating characteristic analysis) and the correlation coefficient (r) between predicted and actual abundances and the
root mean square error of the prediction (RMSE) for predicting species abundance.

Presence/absence Abundance

Species

Full network

CC SE SP

Pruned network

CC SE SP

Full network

r RMSE

Pruned network

r RMSE

Common shiner (5-3-1)
Lake trout (4-2-1)
Northern redbelly dace (7-4-1)
Smallmouth bass (5-4-1)

66.4
75.0
60.9
80.5

64.3
70.9
58.8
90.6

68.1
78.1
63.3
50.0

63.3
74.2
60.9
79.7

46.4
72.7
58.8
95.8

76.4
76.7
63.3
31.3

Creek chub (6-3-1)
Golden shiner (5-3-1)
Pumpkinseed (6-2-1)
Yellow perch (6-4-1)

0.833
0.783
0.734
0.784

0.194
0.260
0.209
0.204

0.813
0.748
0.622
0.779

0.206
0.281
0.236
0.206

lake size (i.e., area, maximum depth, and shoreline
perimeter) and TDS (a surrogate for productivity)
were identified as positively influencing the prob-
ability of smallmouth bass and lake trout occur-
rence. Lake area and maximum depth are known
to influence the occurrence of these species (e.g.,
Eadie and Keast 1984; Jackson and Harvey 1989)
because they alter the mixing characteristics and
the thermal regime of lakes. Furthermore, lake area
and depth serve as indirect measures of the di-
versity of habitats available in lakes, which may
be important to support the small-bodied forage

fish on which smallmouth bass and lake trout feed.
Presence of a littoral-zone predator had a strong
negative effect on the probability of northern red-
belly dace occurrence but minimal effect on com-
mon shiner occurrence. This finding is consistent
with studies that suggest the abundance and dis-
tributions of northern redbelly dace are greatly af-
fected by the presence of a littoral predator (Find-
lay et al. 2000; MacRae and Jackson 2001), where-
as common shiners appear to be more resistant to
predation (Chapleau et al. 1997; Whittier et al.
1997). Interestingly, the negative relationship be-
tween northern redbelly dace and presence of a
predator weakens substantially with increasing
shoreline perimeter. As shoreline perimeter in-
creases for a given lake area, the shoreline be-
comes more convoluted, increasing the potential
for the presence of protected embayments and
patchy nearshore habitats that provide increased
habitat heterogeneity and potential refuge from
predation (Jackson et al. 2001).

Several within-lake factors were related to in-
creased species abundance. Greater abundances of
yellow perch and pumpkinseed were predicted for
sites with large amounts of coarse woody material
and low densities of vegetation. The opposite was
true for golden shiner and creek chub, which were
found in greater abundance in more vegetated
sites. Habitat cover was generally more important
in the models for creek chub than those for golden
shiner, supporting the view that creek chub pop-
ulations may be less tolerant of habitat modifica-
tions (Whittier and Hughes 1998). Although the
form of preferred cover differs among species,
these results strengthen the notion that predicted



893FISH HABITAT RELATIONSHIPS

abundance is greater in areas with greater habitat
cover (Bryan and Scarnecchia 1992; Moring and
Nicholson 1994; Christensen et al. 1996). Occu-
pancy of complex habitats by golden shiner and
creek chub supports the idea that these habitats
provide profitable foraging areas (e.g., Werner et
al. 1983; Diehl and Eklov 1995), rather than sim-
ply providing shelter from predation, because
Crosson Lake lacks large piscivorous fish. Depth
also played an important role in predicted species
abundance. Yellow perch, creek chub, and golden
shiner were predicted to be more abundant at
depths of 1.5 m than at 0.5 m, whereas pumpkin-
seed was more numerous in shallower habitats
closer to shore. Therefore, spatial occupancy of
these species appears to be divided into different
facets, depending on the interactions between the
type of cover (i.e., vegetation or coarse woody
material) and depth. In addition, these species–
habitat associations were often influenced by the
degree of site exposure. For example, the impor-
tance of depth and cover for predictions of yellow
perch and pumpkinseed weakens with increasing
site exposure. Finally, the fact that sampling month
appears to be important for golden shiner abun-
dance, which decreased from the July to the Au-
gust sampling period, supports the importance of
seasonal-dependent processes for some species in
lakes (e.g., Hatzenbeler et al. 2000).

In summary, the ANNs provided a powerful
technique for uncovering interactions among hab-
itat characteristics of lakes and for determining
their influence on species occurrence and abun-
dance. Such interactions are more difficult to as-
sess by multiple regression, which requires in-
cluding multiplicative combinations of the vari-
ables directly into the models. For example, ex-
amining the direct and interactive effects of two
variables, say, A and B, requires the inclusion of
A, B, and A 3 B into the regression model. Where
many variables are included, the number of pos-
sible variable combinations increases, contributing
to increased type I errors in the results (see Olden
and Jackson 2000 for details). ANNs do not require
the inclusion of the additional interaction terms as
separate variables.

Fish–Habitat Models as Important Management
Tools

The development of models for predicting the
distribution and abundance of fish populations is
of paramount importance, given that demand con-
tinues for the development of lake shorelines. Our
study shows that ANNs can provide accurate pre-

dictions regarding the abundance and occurrence
of fish species based on within- and whole-lake
habitat characteristics. Predictions about the ef-
fects of littoral-zone alteration on fish abundance
could be a valuable tool for lake managers in de-
ciding whether proposed shoreline modifications
should be allowed in a system, or alternatively,
deciding where in a lake the modifications should
be permitted to minimize their impact on the fish
community. Cottage owners often remove both
macrophytes and woody material from their shore-
lines to enhance the cosmetic appearance of their
property and minimize boating problems. Devel-
oped lakes with shoreline residences have sub-
stantially less density of coarse-woody material
than do less developed lakes (Christensen et al.
1996), which can negatively affect species com-
position and fish abundances (e.g., Poe et al. 1986;
Everett and Ruiz 1993) and decrease fish growth
rates (e.g., Schindler et al. 2000). In addition, fish–
habitat models may be particularly useful for pre-
dicting the cumulative effects of small-scale hab-
itat modifications on fish abundance and spatial
occupancy. Some researchers have argued that
modeling the effects of small incremental habitat
change may be impractical because of the diffi-
culties in identifying and interpreting the effects
of multiple modifications on fish populations (Jen-
nings et al. 1999). Others have argued that mod-
eling such relationships is not possible because of
the lack of detailed data (Panek 1979) and of pow-
erful quantitative techniques (Burns 1991). We be-
lieve that using alternative statistical methodolo-
gies help to offset these difficulties. Detailed data
describing within-lake habitat characteristics and
fish use currently exist for many systems. How-
ever, the most common approaches for analyzing
and summarizing such data involve simple, de-
scriptive statistics (Bain et al. 1999). Therefore,
better use of available data and more flexible, pow-
erful statistical methods, such as ANNs, may en-
able managers to predict the effects of small-scale
habitat modifications on fish populations.

We have shown that whole-lake habitat attri-
butes can successfully predict fish occurrence. The
development of such models has important impli-
cations for prioritizing surveys and monitoring
programs of fish populations because limits to re-
sources preclude extensive sampling of aquatic
habitats. Model predictions can also be used as
first-order estimates of habitat suitability, which
can be followed by ground-truthing and field val-
idation, to predict sites with available spawning
habitat (e.g., Knapp and Preisler 1999) or to es-
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tablish potential locations for species reintroduc-
tion. Similarly, models can be used to predict the
likelihood of local establishment and spread of ex-
otic species, which may help set conservation pri-
orities for preserving vulnerable species and pop-
ulations that might be lost locally (e.g., Hrabik and
Magnuson 1999).

Enhancing the Predictive Power of Fish–Habitat
Models

The predictive abilities of conventional models
for species presence/absence are commonly as-
sessed from overall classification rates alone. We
show that by partitioning the predictive perfor-
mance of the models into measures such as sen-
sitivity and specificity, we can more readily assess
the strengths and weaknesses of the models. For
example, the presence of creek chub, pumpkin-
seed, and yellow perch could be predicted with a
high degree of certainty (in more than 90% of the
lakes); predicting the absence of these species,
however, was more difficult. It is also evident that
model sensitivity increases and specificity decreas-
es with increasing frequency of species occurrence
(i.e., species prevalence) in the lakes. This rela-
tionship is expected yet is seldom considered in
distribution modeling. The relationship between
prediction success and species prevalence in the
data set has several practical implications. First, a
decrease in model sensitivity for rare species im-
plies it will be more difficult to predict the oc-
currence of organisms for which conservation and
management are most critical. Consequently, our
ability to identify suitable locations for species
reintroductions could be limited. Second, drawing
inferences from observed absences of species from
sites containing suitable habitat conditions (e.g.,
indirect evident for dispersal, predation, and com-
petition) could be limited if the models show poor
specificity. Examining alternative measures of pre-
diction success can provide more accurate com-
parisons of different modeling approaches (e.g.,
Manel et al. 1999) and different models (i.e., dif-
ferent subsets of variables). For example, we found
that although the overall correct classification rates
for some species were similar, specificity and sen-
sitivity values were often quite different. Also,
correct classification rates did not change between
the full and the pruned neural networks, but sen-
sitivity and specificity both did.

The effect of species prevalence in model de-
velopment is unavoidable; one would expect that,
given an increased frequency of occurrence, the
probability of predicting the species to be present

is greater. However, varying the decision threshold
probability for which the model predicts presence/
absence, rather than following the conventional
arbitrary threshold of 0.5, can compensate for this
bias and result in more powerful models (e.g., Car-
roll et al. 1999; Manel et al. 1999). Determining
the optimal decision threshold involves construct-
ing ROC plots and then choosing the threshold that
maximizes sensitivity and specificity, given par-
ticular misclassification costs. This technique has
been applied widely to clinical problems in med-
icine, but few ecological studies have used ROC
analysis. We used equal costs of false presence
(misclassifying a species as present) and false ab-
sence (misclassifying a species as absent); how-
ever, in practice, it may be advantageous to assign
more appropriate costs to the misclassifications if
such information is available. Although assigning
costs is a complex and potentially subjective pro-
cess, much can be gained. For example, we might
tolerate more false presences for endangered spe-
cies rather than fail to protect a species and thus
could adjust the decision threshold accordingly to
develop a more powerful predictive model.

Finally, one important concern is that many
models lack geographical transferability (i.e., poor
model performance outside the original data used
to develop the model) because species–
environment associations can differ substantially
in different systems (e.g., Leftwich et al. 1997).
Nevertheless, models may be useful when applied
at the scale from which they were developed and
in systems where similar species–environment as-
sociations exist. We have shown that testing mod-
els in adjacent drainages demonstrates the gener-
ality of the fish–habitat models. Models built using
lakes in the Madawaska River drainage not only
performed well for the same set of lakes, but ac-
tually performed slightly better, on average, for
predicting species occurrence in the Oxtongue
River drainage. Although one might be surprised
that correct classification rates were slightly higher
in the Oxtongue lakes (i.e., test data) compared
with the Madawaska lakes (i.e., training data), in
fact model sensitivity was on average high and the
species modeled were more prevalent in the Ox-
tongue lakes than in the Madawaska drainage.
Consequently, the effect of species prevalence on
geographic transferability of fish–habitat models
also needs to be considered.

Conclusion

ANNs have wide applicability to the study of
ecological relationships, both as exploratory and
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predictive tools. ANNs provide a flexible approach
that can accommodate a wide variety of study de-
signs without the statistical constraints of inde-
pendence and linearity, and they require no a priori
understanding of variable relationships. Conse-
quently, they are useful techniques for relating the
distributions and abundances of fish populations
to their physical environment. Given the obvious
importance of establishing linkages between hab-
itat features, fish distributions, and the use of near-
shore habitats by fish, the development and testing
of fish–habitat models are important steps in the
conservation and management of lake fish popu-
lations. Such predictive models can advance man-
agement efforts to understand fish–habitat asso-
ciations and predict the effects of natural and an-
thropogenic-related habitat modification on fresh-
water fish populations.
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Özesmi, S. L., and U. Özesmi. 1999. An artificial neural
network approach to spatial habitat modelling with
interspecific interaction. Ecological Modelling 116:
15–31.

Panek, F. M. 1979. Cumulative effects of small modi-
fications to habitat. Fisheries 4(2):54–57.

Poe, T. P., C. O. Hatcher, C. L. Brown, and S. W. Schloes-
ser. 1986. Comparison of species composition and
richness of fish assemblages in altered and unaltered
littoral habitats. Journal of Freshwater Biology 3:
525–536.

Richter, B. D., D. P. Braun, M. A. Mendelson, and L.
L. Master. 1997. Threats to imperiled freshwater
fauna. Conservation Biology 11:1081–1093.

Ripley, B. D. 1996. Pattern Recognition and Neural Net-
works. Cambridge University Press.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986.
Learning representations by back-propagation er-
rors. Nature (London) 323:533–536.

Schindler, D. E., S. I. Geib, and M. R. Williams. 2000.
Patterns in fish growth along a residential devel-

opment gradient in north temperate lakes. Ecosys-
tems 3:229–237.

Titus, K., J. A. Mosher, and B. K. Williams. 1984.
Chance-corrected classification for use in discrim-
inant analysis: Ecological applications. American
Midland Naturalist 111:1–7.

Tonn, W. M., J. J. Magnuson, M. Rask, and J. Toivonen.
1990. Intercontinental comparison of small-lake
fish assemblages: The balance between local and
regional processes. American Naturalist 136:345–
375.

Walley, W. J., and V. N. Fontama. 1998. Neural network
predictors of average score per taxon and number
of families at unpolluted sites in Great Britain. Wa-
ter Resources 32:613–622.

Werner, E. E., G. G. Mittelbach, D. J. Hall, and J. F.
Gilliam. 1983. Experimental tests of optimal habitat
use in fish: the role of relative habitat profitability.
Ecology 64:1525–1539.

Whittier, T. R., D. B. Halliwell, and S. G. Paulsen. 1997.
Cyprinid distributions in Northeast U.S.A. lakes:
evidence of regional-scale minnow biodiversity
losses. Canadian Journal of Fisheries and Aquatic
Sciences 54:1593–1607.

Whittier, T. R., and R. M. Hughes. 1998. Evaluation of
fish species tolerances to environmental stressors in
lakes in the northeastern United States. North Amer-
ican Journal of Fisheries Management 18:236–252.

Williams, J. E., J. E. Johnson, D. A. Hendrickson, S.
Contreras-Balderas, J. D. Williams, M. Navarro-
Mendoza, D. E. McAllister, and J. E. Deacon. 1989.
Fishes of North America: endangered, threatened,
or of special concern. Fisheries 14(6):2–20.


